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Preface

The goal of these lecture notes is to give a relatively short but sufficiently rigor-
ous, and hopefully readable account of basic numerical methods used in pricing
derivative financial products. Derivative pricing is one of the many problems of
financial mathematics. Rigorous pricing methods started in the seventies with the
celebrated model of Black, Scholes, and Merton and became a basis for the pricing
of thousands of complex financial products. There is a large number of excellent
books dealing with numerical implementations of these pricing methods. But the
majority of them are focused on numerical algorithms used in pricing. These notes
have originated from a course given to students of mathematics at the University of
Warsaw. That audience obliged the lecturer to speak not only about algorithms but
also about the mathematical foundations which stay behind these algorithms: con-
vergence, stability, and error estimates. The main body of the text is restricted to
theoretical material with a limited number of examples related to financial models.

Writing these notes I have assumed that the reader possesses a broad knowledge
of continuous finance and its mathematical models. Thus there are no introductory
chapters on quantitative finance. All described numerical methods start with the
presentation of the analytical problem as a stochastic or partial differential equation
without discussing the relation to a financial model. But the numerical methods are
quite general and the experienced reader can recognize that they cover not only the
Black-Scholes model but also local and stochastic volatility models. On the other
hand, the reader whose acquaintance with quantitative finance is limited to the
Black-Scholes model can ignore the multidimensional approach since the results
are also valid for simple models.

The fundamental principle of numerical analysis is that one can compute only
solutions that do exist. Following that principle, I have included in these notes
theorems that guarantee the existence (and possibly uniqueness) of solutions to
equations that are subjects of forthcoming numerical analysis. That goal is easy to
achieve for financial models formulated in probabilistic terms (random variables,
stochastic processes, stochastic differential equations) because they are standard
tools used in continuous finance. Besides, the most advanced result I am using, is
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6 PREFACE

the existence and properties of solutions for the stochastic differential equation of
Itô type, the results belonging to the usual prerequisites for any course of quantita-
tive finance. The situation is completely different with financial models described
by partial differential equations (PDE). First, a course in the PDE theory is rarely
required as a prerequisite for financial courses. Second, to formulate a theorem on
the existence of solutions for a PDE model, we need pretty advanced tools: weak
derivatives, Sobolev’s spaces, weak solutions, etc. Therefore, I have decided to
thoroughly introduce partial differential equations together with the Feynman-Kac
theorem, which gives a rigorous passage from the stochastic to the PDE formula-
tion of financial models. Finally, presenting existence proofs for PDEs has some
didactic aspects, as these proofs are in many cases prototypes for proofs of conver-
gence for numerical methods. Hence, before passing to operations with multiple
indices of a numerical algorithm, the reader can see the proof idea in a clean func-
tional space formulation.

Since the notes are written mainly for students of mathematics or mathemat-
ically oriented students of economics or natural sciences who study quantitative
finance for academic or professional purposes the presentation is quite advanced
taking for granted a broad knowledge of analysis, probability, and statistics with
some orientation in stochastic processes. The whole presentation is restricted to
pricing derivative instruments in a financial model described by the Itô SDE and
the corresponding parabolic PDE. This is a simplification that makes it easier to
achieve the main goal of presenting complete proofs. These complete proofs are
compilations from many sources, sometimes with my original additions. There are
no references to these sources in the body of the text. But the list of references
contains books and research papers from which I have profited writing these notes.
Of course, I was not able to succeed with writing proofs of all theorems. There are
many theorems without proof. For such theorems, I usually quote the reference in
which the proof can be found. Essentially, I omit proofs that do not belong to the
area of numerical analysis and the reason for skipping them is twofold: first, some
proofs belong to the field of mathematics very distant from the topic of these notes,
and presenting them will require plenty of auxiliary material (this is particularly
visible in the chapter on American options); second, some proofs need advanced
tools being far beyond the knowledge which I can expect from the reader. In some
places, I have made a compromise by just quoting a result necessary in the proof
without mentioning even where such a result comes from. Presenting the theorem
with proofs I formulate the theorem possibly in full generality and then write the
proof of the most elementary case: one-dimensional, with constant coefficients,
smooth data, etc. The reason for such an approach is purely didactic: I intend to
present to the reader the main idea which stays behind the proof and this main idea
can be lost in the orgy of multiple indices, splittings into subdomains, smoothing
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data and coefficients, etc., required for the proof of the sharp version.
The interest of the notes lies in the computation of derivative prices. Since

financial models rely on stochastic differential equations, applying Monte-Carlo
methods to derivative pricing is very natural. Similarly, tree methods are very in-
tuitive and fast. Applying the Feynman-Kac theorem, we can reduce derivative
pricing to solutions of partial differential equations which gives rise to a large class
of numerical methods for PDEs. All these computational approaches are described
in these lecture notes. But the presentation is far from being complete. After all,
there are just lecture notes and not a monograph and the author has selected for
presentation the most popular methods and algorithms. Of course, the selection is
biased by the author’s experience in computational finance. The algorithms and
methods of these notes have been practically tested by myself or my students dur-
ing many years of lecturing computational finance. The experienced reader can
ask why the notes are limited to models in which Wiener processes describe ran-
domness and there are no models with jumps and Lévy processes. The reasons
are numerous. One of these is that including Lévy processes will require writing a
thorough monograph instead of medium-size lecture notes. Such a monograph is
beyond the aspiration of the author.

The notes are organized as follows. After the introductory Chapter 1, in which
binomial and trinomial trees are presented briefly, Chapter 2 addresses the gen-
eration of pseudo-random numbers. It is explained in this chapter how samples
from a given distribution can be generated using pseudo-random numbers. Algo-
rithms for the generation of normal deviates get particular attention in that chapter.
Chapter 3 starts with crude Monte Carlo. Then, the variance reduction technique
is presented. The chapter concludes with the computation of Greeks. In Chapter 4,
numerical solutions of stochastic differential equations are discussed with proofs
of convergence for the Euler and Milstein schemes and error estimates.

A large part of the notes is devoted to numerical solutions of partial differential
equations arising in finance. As an introduction to the topic, Chapter 5 collects
fundamental facts from the theory of weak solutions of PDEs in Sobolev’s spaces.
Chapter 6 focuses on finite difference methods for the partial differential equations
of parabolic type. The most popular finite difference schemes are described and
their accuracy (order of approximation) and stability are proved. Finite element
methods are treated in Chapter 7 for both elliptic and parabolic problems. It is
proved in this chapter that finite element approximations converge to the corre-
sponding solutions of differential problems. Chapter 8 is devoted to American op-
tions. Both Monte Carlo and PDEs methods of pricing are presented. The Monte
Carlo approach is limited to the description of the frequently used algorithm of
Longstaff and Schwartz. Then a careful analysis of its convergence is provided. In
the final part of the chapter, the variational approach to pricing American options is
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discussed. After a short introduction to variational inequalities related to American
options, the presentation is concentrated on two popular numerical methods: the
projected SOR and the penalty method. For both of these methods, the proofs of
stability and convergence are given. As I have mentioned before, the notes orig-
inated from a course in computational finance. But definitely, the scope of these
notes is too broad to fit into a single course. A reasonable selection of material
from Chapters 2–6 can be lectured in one course. On the other hand, the chapter on
American options supplemented by more information on optimal stopping prob-
lems and variational inequalities in continuous time can be sufficient for a special
course.

I would like to express my gratitude to several people who have influenced
me on these lecture notes. I owe a particular debt to Piotr Kowalczyk with whom
I have been lecturing computational finance to several cohorts of students at the
University of Warsaw. I should also like to acknowledge the students who, during
the courses given in the past years, have helped improve the quality of the text
through their questions, comments, and feedback.

It is greatly appreciated if the readers could forward any errors, misprints or
suggested corrections to A.Palczewski@mimuw.edu.pl



Chapter 1

Introduction

1.1 Financial market

The goal of these lecture notes is the analysis of computational problems of fi-
nancial derivatives. We start with a formal definition of the financial market in
continuous time and finite time horizon T . Uncertainty in the financial market is
modeled by a probability space (Ω,F ,P) with a filtration F = (Ft)0≤t≤T satis-
fying the usual conditions of completeness and right-continuity. In addition, we
assume that the σ-field F0 is trivial, i.e. for every A ∈ F0 either P(A) = 0 or
P(A) = 1, and that FT = F . The financial market contains d + 1 basic traded
assets, called underlying securities, whose prices are given by stochastic processes
X0

t , X
1
t , . . . , X

d
t in (Ω,F ,P). We assume that these processes are adapted to fil-

tration F, right-continuous with left limits, positive semimartingales.
To account for the time value of money, we introduce a discount process – a

numéraire.

DEFINITION. 1.1 A numéraire is a stochastic process Xt almost surely strictly
positive for each t ∈ [0, T ].

In what follows, we assume thatX0
t is a non-dividend paying asset which is almost

surely strictly positive for each t ∈ [0, T ], and which we use as numéraire. We will
also use the discount process βt = (X0

t )
−1.

Remark. 1.1 Usually the money banking account Bt = e
∫ t
0 r(s)ds with determin-

istic r(t) (say r(t) = r, a constant interest rate) plays the role of numéraire.
If B(t, T ) is the value at t ⩽ T of an asset paying one currency unit at time T ,

then B(t, T ) = e−
∫ T
t r(s)ds = BtB

−1
T .

9



10 CHAPTER 1. INTRODUCTION

Hence, the financial market consists of d price processes Xt = (X1
t , . . . , X

d
t )

which we call risky assets and the numéraire X0
t , all defined on the probability

space (Ω,F ,P). The dynamics of Xt is given by the system of stochastic differen-
tial equations

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x, (1.1)

where b is a d-dimensional vector, σ a matrix of dimension d ×m, and Wt is an
m-dimensional Wiener process.
Written in the components of vector X equation (1.1) reads

dXi
t = bi(t,Xt)dt+

m∑
j=1

σji (t,Xt)dW
j
t , Xi

0 = xi, i = 1, . . . , d.

We assume that the coefficients of equation (1.1) fulfill conditions that guaran-
tee the existence of strong solutions.

THEOREM. 1.2 Let the coefficients in equation (1.1) be such that:

(A1) |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|;

(A2) |b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|);

for x, y ∈ Rd and t ∈ [0, T ], where | · | denotes the Euclidean norm in Rd and K
is a finite, positive constant.

If x is a square integrable random variable (E
(
|x|2
)
<∞) independent of Wt

then

1. The sequence of iterates

X
(0)
t = x, X

(n+1)
t = x+

∫ t

0
b
(
s,X(n)

s

)
ds+

∫ t

0
σ
(
s,X(n)

s

)
dWs

converges to Xt.

2. Xt is a unique, strong solution of the stochastic differential equation

Xt = x+

∫ t

0
b
(
s,Xs

)
ds+

∫ t

0
σ
(
s,Xs

)
dWs.

3. The process Xt is square-integrable, and for each T > 0 there exists a
constant C such that

E
(
|Xt|2

)
≤ C

(
1 + E

(
|x|2
))

eCt, 0 ≤ t ≤ T.
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4. If E(|x|k) <∞, for some k ≥ 2, then

E
(
sup
0≤s≤t

|Xs|k
)
≤ C

(
1 + E

(
|x|k

))
, 0 ≤ t ≤ T.

5. If E(|x|k) <∞, for some k ≥ 2, then

E
(
|Xt −Xs|k

)
≤ C

(
1 + E

(
|x|k

))
|t− s|k/2, |t− s| ≤ 1, t, s ∈ [0, T ].

Our principal goal is the valuation of contingent claims which are FT -mea-
surable random variables of the form g(XT ), where XT is a solution of equation
(1.1) taken at time T . Such instruments are called European contingent claims.
On a limited scale, we will analyze computational methods for American instru-
ments and, in several examples, instruments with prices depending on the whole
trajectory of a process (Xt)0≤t≤T (exotic instruments).

We will discuss contingent claim pricing in the idealized market model assum-
ing that the market fulfills the conditions:

1. The market is frictionless: there are no transaction costs, no taxes, costs
of borrowing and lending are equal, there are no liquidity restrictions – all
assets are accessible in unlimited quantity.

2. Market participants are price takers and are rational: they prefer more to less.

3. The market is arbitrage-free.

To valuate the contingent claim g(XT ) we introduce the notion of a trading
strategy.

DEFINITION. 1.3 An Rd+1- valued predictable, left-continuous process

φt = (φ0
t , φ

1
t , . . . , φ

d
t ), t ∈ [0, T ]

such that ∫ T

0
E(φ0

t )dt <∞,

d∑
i=1

∫ T

0
E
(
|φi

t|2
)
dt <∞

is called a trading strategy. Here φi
t is understood as the number of shares of asset

i in the portfolio. (A trading strategy is also called a portfolio process, and φ itself
is often called a portfolio.)

The value of the portfolio φ at time t is given by the expression

Vφ(t) =

d∑
i=0

φi
tX

i
t , t ∈ [0, T ].
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The process Vφ(t) is called the value process of the trading strategy φ.
The gain process Gφ(t) is defined as

Gφ(t) =
d∑

i=0

∫ t

0
φi
sdX

i
s.

A trading strategy φ is called self-financing if the wealth process Vφ(t) satisfies
the equality

Vφ(t) = Vφ(0) +Gφ(t), t ∈ [0, T ].

Let us recall that the market is arbitrage-free if there is no arbitrage opportu-
nity, where an arbitrage opportunity is a self-financing trading strategy φ such that
the wealth process Vφ(t) satisfies the conditions

Vφ(0) = 0, P
(
Vφ(T ) ≥ 0

)
= 1, P

(
Vφ(T ) > 0

)
> 0.

DEFINITION. 1.4 Assume now that on (Ω,F) there exists a measure P∗ equiv-
alent to P such that the discounted price process βtXt is a P∗-martingale. The
measure P∗ is called a strong martingale measure, or a risk-neutral measure.

A self-financing trading strategy φ is called P∗-admissible if the discounted
gain process βtGφ(t) is a P∗-martingale.

A contingent claim g(XT ) is called attainable if there exists an admissible trad-
ing strategy φ such that

Vφ(T ) = g(XT ).

The trading strategy φ is then called a replicating strategy for g(XT ).

Due to the no-arbitrage condition, the value of the replicating strategy φt de-
fines the price V (t) of the attainable contingent claim g(XT ) at time t

V (t) = Vφ(t).

For numerical applications, a more convenient pricing method is a method
called the risk-neutral pricing.

THEOREM. 1.5 Assume that on (Ω,F) there is a risk-neutral measure P∗. Then
the price of the P∗-attainable contingent claim g(XT ) at time t ∈ [0, T ] is

V (t) = β−1
t E∗(βT g(XT )

∣∣Ft

)
,

where E∗ denotes the expectation with respect to P∗.
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Remark. 1.2 To simplify the notation, we assume that the measure P is already a
strong martingale measure, and the discount process is constant βt = 1. Under
these simplifications, the valuation is reduced to the computation

V (0) = E
(
g(XT )

)
.

In some special cases we will consider variable βt — a market risk-free dis-
count factor (typically a deterministic function of time).

Remark. 1.3 If the strong martingale measure P∗ is unique then the market is
complete. Hence, every contingent claim is attainable, and its price is uniquely
defined.

In incomplete markets there are many equivalent martingale measures, and
non-attainable contingent claims have no uniquely defined prices. The prices
which do not generate arbitrage opportunities usually cover a certain interval.
To compute prices in that interval, in particular, to find endpoints of this interval,
we can still use the formula from Theorem 1.5.

Black-Scholes model. The Black-Scholes model is a simple complete market
model. There is only one risky asset in this model with the price process St and
constant volatility σ. The discounting process is defined by a banking account with
a constant interest rate r. As the market is complete, there is a unique martingale
measure which we denote P. The dynamic of the asset price in this martingale mea-
sure is given by the one-dimensional equation, which is a special case of equation
(1.1)

dSt = rStdt+ σStdWt,

where r and σ are positive constants and Wt is a standard one-dimensional P-
Wiener process.

In this model the prices of European call and put options with strike K and
maturity T are given by the celebrated Black-Scholes formula

V (t) = κStN (κd1)− κKe−r(T−t)N (κd2), (1.2)

where κ = 1 corresponds to a call option, κ = −1, to a put option, and

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

In the Black-Scholes model, closed-form formulas exist not only for call and
put options and their combinations but also for several types of exotic options:
binary options, barrier options, compound options, and some others. All these
closed-form formulas are very useful in computational finance as they are bench-
marks for numerical algorithms.
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Local volatility models. In the Black-Scholes formula, the only unobservable
parameter is the volatility σ. Since the formula can be inverted numerically, we
can compute the volatility from the option prices observed in the financial mar-
ket. The volatility computed in this way is called implied volatility. Under the
assumptions of the Black-Scholes model, the implied volatility should be a con-
stant function. In reality, we observe the volatility smile, a U-shaped function of
the strike price K, which additionally is changing with the time to maturity T . The
existence of the volatility smile indicates that assumptions of the Black-Scholes
model should be relaxed. The simplest extension of the model is obtained by as-
suming that asset prices still follow a one-dimensional diffusion process but with a
deterministic volatility function depending on the asset price and time. Such mod-
els are called local volatility models, and the price process in these models has the
following dynamics

dSt = b(t, St)dt+ σ(t, St)dWt. (1.3)

If the functions b(t, s) and σ(t, s) in equation (1.3) are globally Lipschitz-con-
tinuous in s then, due to Theorem 1.2, there is a unique strong solution of (1.3).
Unfortunately, in a number of popular local volatility models like the Constant
Elasticity of Variance (CEV) model (σ(t, s) = sβ with 0 < β ≤ 1), quadratic
model (σ(t, s) = σ0s

2 with σ0 a positive constant) or ”limited” CEV (LCEV)
model (σ(t, s) = smin(sβ−1, ϵβ−1) with 0 < β ≤ 1 and ϵ a positive constant) the
volatility function is not globally Lipschitz-continuous.

The following theorem gives the existence of a solution under relaxed assump-
tions.

THEOREM. 1.6 Consider the d-dimensional stochastic differential equation

dXi
t = bi(t,Xt)dt+

m∑
j=1

σji (t,Xt)dW
j
t , i = 1, . . . , d. (1.4)

Assume that the coefficients of equation (1.4) are locally Lipschitz-continuous

|bi(t, x)− bi(t, y)|+ |σji (t, x)− σji (t, y)| ≤ Kn|x− y|, |x|, |y| < n,

for x, y ∈ D an open subset of Rd and t ∈ [0, T ]. Then equation (1.4) has a
unique, strong solution up to an explosion time.

If the coefficients of (1.4) fulfill the linear growth condition

|bi(t, x)|+ |σji (t, x)| ≤ K(1 + |x|)

then the solution does not explode in a finite time.
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The local Lipschitz condition is satisfied for the quadratic and LCEV models.
From the above theorem, we conclude that for these models there exist unique,
local solutions. But in the CEV model for 0 < β < 1 the function σ(t, s) is not
locally Lipschitz-continuous. For this model the state s = 0 is absorbing and a
unique solution exists only for 1

2
≤ β ≤ 1 (cf. Andersen and Andreasen [2]).

Stochastic volatility models. Although local volatility models are easy to cal-
ibrate to market data and in many cases give closed-form expressions for option
prices the dynamics produced by these models is not very realistic. In particu-
lar, the dynamics is not time invariant. To obtain a more realistic dynamics lo-
cal volatility models have been expanded to stochastic volatility models. In these
models the volatility is assumed to be a stochastic process dependent on a further
exogenous parameter. We consider stochastic volatility models which are defines
as a set of two correlated one-dimensional diffusion processes

dSt = b(t, St)dt+ σ(Yt)C(St)dW
S
t ,

dYt = m(t, Yt)dt+ ν(t, Yt)dW
Y
t ,

d⟨WS ,W Y ⟩t = ρdt.

(1.5)

Formally, this model does not fit the market model described at the beginning
of this Section as the volatility process Yt is not a traded asset. Thus, the market
model is incomplete, and there is no unique risk-neutral measure. On the other
hand, the structure of system (1.5) is the same as equation (1.1) (if necessary after
a de-correlation of the Wiener processes WS and W Y ). As a result, Theorem 1.2
applies to many stochastic volatility models. But similarly, like for local volatil-
ity models, there are stochastic volatility models with coefficients not even locally
Lipschitz-continuous. The existence of solutions for that models requires an indi-
vidual analysis.

The risk-neutral option pricing described above can be easily approximated
by several numerical methods. The most popular are Monte Carlo simulations
and, thanks to the Feynman-Kac formula, numerical solutions of partial differential
equations. We will analyze both of these approaches in detail in the subsequent
chapters. We will also briefly describe binomial and trinomial trees, which are
easy to implement and, in many cases, give quite accurate results.

1.2 Binomial trees

In this section, we present an application of binomial trees to pricing European
style contingent claims written on a single risky asset whose dynamic in a risk-
neutral measure is given by the Black-Scholes model
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dS(t) = rS(t)dt+ σS(t)dWt, S(0) = S0, 0 ≤ t ≤ T. (1.6)

We discretize the time interval [0, T ] and the process S(t)

δt =
T

N
, tn = nδt, Sn = S(tn).

The dynamic of Sn is given by the equation

Sn+1 = Zn+1Sn,

where Zn is a sequence of independent random variables which can take for each
n only two states (we assume u > d)

Zn =

{
u, with probability p,
d, with probability 1− p.

We assume a constant risk-free interest rate which gives the numéraire

Bn = er nδt.

Then in risk-neutral measure

E(Sn+1|Sn) = erδtSn. (1.7)

This leads to the equation

pu+ (1− p)d = erδt,

which gives the risk-neutral probability

p =
erδt − d

u− d
. (1.8)

The condition 0 < p < 1 is equivalent to

d < erδt < u, (1.9)

and guarantees the existence of a unique risk-neutral measure for the binomial
model. The picture of the first few nodes of a binomial tree is seen on Fig. 1.1.

The pricing process of an option with payoff g(S(T )) can be described by the
following steps:

1. Fix the input parameters: u, d, r, T and the number of time steps N .
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S2 = S0u
2

S1 = S0u

p 33

1−p
++
S2 = S0ud

S0

p
88

1−p

&&
S2 = S0du

S1 = S0d

p 33

1−p
++
S2 = S0d

2

B0 = 1 // B1 = erδt // B2 = e2rδt

Figure 1.1: Binomial tree.

2. Compute the risk-neutral probability p.

3. Compute the payoff g(S) in each node in period N .

4. For each n, starting from N − 1 to 0, compute the payoff in each node using
formula (1.7), the payoffs of the previous step, and the value of p.

5. The value in the root of the tree is the price of the option.

The above algorithm has a very high computational complexity as the number
of nodes increases exponentially with the number of time steps. This algorithm
can only be run with a small number of time steps, which can result in inaccurate
pricing. To reduce the computational complexity, we have to limit the algorithm to
the so-called recombining binomial trees, where we glue identical nodes into one
node. A recombining binomial tree can be seen in Fig. 1.2.

Recombining trees can be used to compute prices of European and American
contingent claims, but not for pricing path-dependent instruments (exotic).

Let Sji denote the price after i time steps with j being the number of up moves.
Since we deal with a recombining tree, then

Sji = S0u
jdi−j .

In a risk-neutral measure, we have

Sji = e−rδt
(
pSj+1,i+1 + (1− p)Sj,i+1

)
.
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Figure 1.2: Recombining binomial tree.

For the payoff function g(S(t)), the price of a European option can be obtained by
the sequence of iterates

VjN = g(SjN ), j = 0, 1, . . . , N,

Vji = e−rδt
(
pVj+1,i+1 + (1− p)Vj,i+1

)
, i < N.

For an American option we have

VjN = g(SjN ), j = 0, 1, . . . , N,

Vji = max
(
g(Sji), e

−rδt
(
pVj+1,i+1 + (1− p)Vj,i+1

))
, i < N.

To use this algorithm in practical computations, we have to calibrate the model
to the market. The parameters r and S0 are observed on the market, but the param-
eters u and d are only model idealizations and cannot be directly determined by the
observation of market data. We turn to the Black-Scholes model (1.6) in which we
know the asset prices

S(t) = S0e
(r− 1

2
σ2)t+σWt , S0 > 0.
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Hence, the expected value of S(t+ δt) conditional on S(t) is

E
(
S(t+ δt)|S(t)

)
= S(t)erδt,

and the conditional variance

Var
(
S(t+ δt)|S(t)

)
= S(t)2e2rδt

(
eσ

2δt − 1
)
.

In the binomial tree the corresponding values are

E
(
S(t+ δt)|S(t)

)
= S(t)

(
pu+ (1− p)d

)
,

Var
(
S(t+ δt)|S(t)

)
= E

(
S2(t+ δt)|S(t)

)
−
(
E
(
S(t+ δt)|S(t)

))2
= p(S(t)u)2 + (1− p)(S(t)d)2 −

(
S(t)

)2(
pu+ (1− p)d

)2
.

Comparing the right hand sides of the relevant equations we get

S(t)
(
pu+ (1− p)d

)
= S(t)erδt,

p(S(t)u)2 + (1− p)(S(t)d)2 −
(
S(t)

)2(
pu+ (1− p)d

)2
=
(
S(t)

)2
e2rδt

(
eσ

2δt − 1
)
.

After simplifications we have

pu+ (1− p)d = erδt,

pu2 + (1− p)d2 = e2rδt+σ2δt.
(1.10)

The first equation (1.10) gives the known expression of the risk-neutral probability

p =
erδt − d

u− d
,

the second equation is not sufficient to compute two parameters u and d. We need
an additional relation. The choice of this relation gives rise to different binomial
models. Here are some examples:

• the Cox-Ross-Rubinstein model (CRR) [13] in which we put ud = 1; this
model is the industry standard,

• the Jarrow-Rudd model [27] in which we put p = (1− p) = 1
2 ,

but there are many other possibilities used in practice.
We will now analyze the Cox-Ross-Rubinstein model.
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THEOREM. 1.7 Consider the CRR model for a fixed N with arbitrary u and d
fulfilling conditions (1.9) and ud = 1, with p given by formula (1.8). The price at
time tn = nδt of a European call option with maturity T and strike K is

VN (tn) = e−r(N−n)δt
N−n∑
j=0

(
N − n

j

)
pj(1− p)N−n−j

(
S(tn)u

jdN−n−j −K
)+
,

where the subscriptN indicates the price computed in the model withN time steps.

Proof. Since S(tn) = S0
∏n

j=1 Zj then using Theorem 1.5 we obtain

VN (tn) = e−r(T−tn)E
((
ST −K

)+∣∣Ftn

)
= e−r(T−tn)E

((
S(tn)

N∏
j=n+1

Zj −K
)+∣∣Ftn

)

= e−r(T−tn)E
((
S(tn)

N∏
j=n+1

Zj −K
)+)

= e−r(N−n)δt
N−n∑
j=0

(
N − n

j

)
pj(1− p)N−n−j

(
S(tn)u

jdN−n−j −K
)+
.

The above equalities follow from: the independence of Zj of Ftn for j > n, the
Ftn-measurability of S(tn), and the nonnegativity of (x−K)+.

Calibrating u and d in the Cox-Ross-Rubinstein model to the Black-Scholes
model we obtain

u = β +
√
β2 − 1,

d = β −
√
β2 − 1,

where

β =
1

2

(
e−rδt + e(r+σ2)δt

)
.

In practice, there is a tendency to use the simplified version of the CRR model

u = eσ
√
δt, d = e−σ

√
δt.

The simulations for the full and simplified models are, for large N , close to each
other due to the convergence of the CRR model to the Black-Scholes model.
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THEOREM. 1.8 Consider a sequence of the CRR models starting from the same
S0 with N increasing to infinity. Let δN = T

N . Define

uN = eσ
√
δN , dN = e−σ

√
δN , pN =

erδN − e−σ
√
δN

eσ
√
δN − e−σ

√
δN
.

Let VN (0) denote the price at time t = 0 of a European call option with maturity
T and strike K and the parameters uN , dN , pN defined above.

When VBS(t) denotes the Black-Scholes price of that option at time t, then

lim
N→∞

VN (0) = VBS(0).

Proof. Let SN
n = S(nδN ) denote the asset prices in the model for a fixed N .

Denote ZN
n = SN

n

SN
n−1

, then

SN
n = S0

n∏
j=1

ZN
j .

Since P(ZN
j = uN ) = pN , P(ZN

j = dN ) = 1− pN , and NδN = T , we obtain

SN
N = SN (T ) = S0 exp

(
σ
√
δN

N∑
j=1

RN
j

)
,

where RN
j =

lnZN
j

σ
√
δN

.

RN
j are independent (since ZN

j are independent) and with the identical distri-
bution

P(RN
j = 1) = pN , P(RN

j = −1) = 1− pN , for j = 1, . . . , N.

Expanding pN into Taylor’s series, we obtain

pN =
1

2
+
r − 1

2
σ2

2σ

√
δN +O(N−1).

Then for each j

E
(
σ
√
δNR

N
j

)
=
(
r − 1

2
σ2
) T
N

+ o(N−1)

and
Var
(
σ
√
δNR

N
j

)
= σ2

T

N
+ o(N−1).
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Hence by the central limit theorem, we obtain

σ

√
T

N

N∑
j=1

RN
j → N

(
(r − 1

2
σ2)T, σ2T

)
in distribution as N → ∞

and

SN (T ) → S0 exp
(
(r − 1

2
σ2)T + σ

√
TZ
)

in distribution as N → ∞,

where Z ∼ N (0, 1).
Since

VN (0) = e−rTE
(
(SN (T )−K)+

)
,

then VN (0) converges to

V (0) = e−rTE
((
S0 exp

(
(r − 1

2
σ2)T + σ

√
TZ
)
−K

)+)
=

1√
2π

∫ ∞

−∞

(
S0 exp

(
− 1

2
σ2T + σ

√
Tx
)
− e−rTK

)+
e−

1
2
x2
dx.

Let

γ =
ln(K/S0) + ( 1

2
σ2 − r)T

σ
√
T

.

The integrand is non-zero only on the interval (γ,∞) as

σ
√
Tx− 1

2
σ2T > ln(K/S0)− rT

only on this interval. Then we have

V (0) =
1√
2π
S0

∫ ∞

γ
e−

1
2
σ2T eσ

√
Tx− 1

2
x2
dx−Ke−rT

(
1− Φ(γ)

)
=

1√
2π
S0

∫ ∞

γ
e−

1
2
(x−σ

√
T )2dx−Ke−rT

(
1− Φ(γ)

)
= S0

(
1− Φ(γ − σ

√
T )
)
−Ke−rT

(
1− Φ(γ)

)
,

where Φ is the cumulative normal distribution function.
By symmetry

(
1− Φ(γ)

)
= Φ(−γ) we obtain

− γ + σ
√
T =

ln(S0/K) + (r + 1
2
σ2)T

σ
√
T

≡ d+,

− γ =
ln(S0/K) + (r − 1

2
σ2)T

σ
√
T

≡ d−.
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Hence
V (0) = S0Φ(d+)− e−rTKΦ(d−)

which is the Black-Scholes formula for call options.

In the Jarrow-Rudd model we have

u = erδt
(
1 +

√
eσ2δt − 1

)
,

d = erδt
(
1−

√
eσ2δt − 1

)
.

Very often the following simplified version of these parameters is used:

u = e(r−σ2/2)δt+σ
√
δt,

d = e(r−σ2/2)δt−σ
√
δt.

For a general binomial model, we can assume without loss of generality

ud = e2νδt,

for a scalar parameter ν. This leads to the following simplified version of parame-
ters u and d (the exact expressions are very complicated):

u = eνδt+σ
√
δt,

d = eνδt−σ
√
δt,

p =
1

2
+

1

2

(µ− ν

σ

)√
δt, where µ = r − σ2/2.

The value ν = 0 corresponds to the CRR model (the tree is symmetric) and ν = µ,
to the Jarrow-Rudd model (there is a deterministic drift eµδt).

Binomial models are the simplest lattice models used in financial computa-
tions. But trees with a larger number of states are also in use. We present an
implementation of trinomial trees. We assume, like for binomial trees, that

Sn+1 = Zn+1Sn.

For trinomial trees, Zn is a sequence of independent random variables which, for
each n, take 3 states

Zn =


u, with probability pu,
m, with probability pm,
d, with probability pd.
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Our goal is to find pu, pm and pd which define a risk-neutral measure. We have
the obvious condition pu + pm + pd = 1. In addition, to obtain a recombining tree
we need ud = m2, where we assume u > m > d. Computing E(Sn+1|Sn) in
risk-neutral measure we obtain

puu+ pmm+ pdd = erδt.

The above 3 equations are not sufficient to determine uniquely a risk-neutral mea-
sure. Hence there are many risk-neutral measures for trinomial trees, and the mar-
ket is incomplete. Thus, not all contingent claims can be uniquely priced in this
model. (Note the difference with binomial models where a risk-neutral measure is
uniquely defined by (1.8) independently from the model specification.)

The process of calibration for trinomial trees is similar to the process for bino-
mial trees. The comparison of conditional expectations and variances between the
trinomial model and the Black-Scholes model gives the equations

puu+ pmm+ pdd = erδt,

puu
2 + pmm

2 + pdd
2 = e(2r+σ2)δt.

(1.11)

Together with equations pu + pm + pd = 1 and ud = m2 we have 4 equations for
6 unknowns. To make the problem solvable we assume

Zn =


eµδt+λσ

√
δt, with probability pu,

eµδt, with probability pm,
eµδt−λσ

√
δt, with probability pd.

Computing u, m and d by this approximation and inserting pm = 1 − pu − pd in
(1.11), we obtain

pu(U − 1) + pd(D − 1) = F − 1,

pu(U
2 − 1) + pd(D

2 − 1) = H − 1,

where U = eλσ
√
δt, D = e−λσ

√
δt, F = e(r−µ)δt and H = e(2r+σ2−2µ)δt. Solving

the above equations we get

pu =
H − (D + 1)F +D

(U −D)(U − 1)
,

pm =
−H + (U +D)F − UD

(1−D)(U − 1)
,

pd =
H − (U + 1)F + U

(U −D)(1−D)
.

(1.12)
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This model has a built-in deterministic drift eµδt. To obtain a symmetric trino-
mial tree we assume µ = 0. That symmetric model with

Zn =


eλσ

√
δt, with probability pu,

1, with probability pm,
e−λσ

√
δt, with probability pd.

(1.13)

can be considered as a trinomial version of the CRR model. Expanding all terms in
equations (1.12) in power series of

√
δt we obtain after tedious computations the

following expressions in the first-order approximation

pu =
1

2λ2
+

(r − σ2/2)
√
δt

2λσ
,

pm = 1− 1

λ2
,

pd =
1

2λ2
− (r − σ2/2)

√
δt

2λσ
.

(1.14)

Kamrad and Ritchken have obtained a similar result under the additional as-
sumptions that E(lnZn) = (r − σ2/2)δt and Var(lnZn) = σ2δt which corre-
sponds to a discrete version of Black-Scholes. That assumptions greatly simplify
the computations and we obtain the following match of the first two moments of
lnZn

λσ
√
δt(pu − pd) = (r − 1

2
σ2)δt,

λ2σ2δt(pu + pd) = σ2δt.

Solving that system of equations, we obtain (1.14) as exact solutions.
Thus for the symmetric trinomial tree, we know the parameters of the model as

the functions of λ. Let us notice that to obtain the non-negative probabilities, we
have to take λ ≥ 1. But, we also have the stability problem of the model. λ = 1
is on the edge of the stability region. To get a stable model, we have to choose
λ substantially larger than 1. The choice of λ influences the rate of convergence
of option prices computed in the model to the Black-Scholes prices. Kamrad and
Ritchken have shown that the value of λ that produces the best convergence rate is

λ =
√
3/2.

1.3 Monte Carlo methods

We describe the idea behind Monte Carlo methods in a simple example: the com-
putation of expectation E(g(XT )) whereXT is a random variable (the state at time
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T of a stochastic process Xt). Let us assume that the distribution ϕX(x) of the
random variable XT is known. Then

E
(
g(XT )

)
=

∫
Rd

g(x)ϕX(x)dx =

∫
[0,1]d

f(x)dx,

where f(x) is obtained by a change of variables Rd → [0, 1]d.
The function f(x) is in many cases too complicated to obtain an analytic for-

mula for the integral
∫
[0,1]d f(x)dx. We can compute that integral by the following

Monte Carlo algorithm: we sampleN points xi distributed ”uniformly” in the cube
[0, 1]d and use the approximation

∫
[0,1]d

f(x)dx ≃ 1

N

N∑
i=1

f(xi). (1.15)

This algorithm is similar to a deterministic quadrature. The difference lies in
error estimates: a deterministic quadrature of order k approximates the integral
with the error O(N−k/d) and the Monte Carlo approximation, using randomly
sampled points, gives the error of order O(N−1/2) independent of the dimension
d (see comments below).

In practice, we omit computation of f(x) and sample points xi from the distri-
bution of XT

E(g(XT )) ≃
1

N

N∑
i=1

g(xi). (1.16)

The foundation of Monte Carlo methods consists of two results: the strong law
of large numbers and the central limit theorem.

THEOREM. 1.9 (Strong law of large numbers) Let X1, X2, . . . be a sequence
of square integrable, identically distributed, independent random variables with
E(Xi) = µ <∞. Let

Yn =
X1 +X2 + · · ·+Xn

n
, n = 1, 2, . . . .

Then
lim
n→∞

Yn = µ, a.s.

The strong law of large numbers implies that the right hand side averages in
equations (1.15) and (1.16) converge to the integrals in the left hand sides a.s.
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THEOREM. 1.10 (Central limit theorem) LetX1, X2, . . . be a sequence of squa-
re integrable, identically distributed, independent random variables with expecta-
tions E(Xi) = µ <∞ and variances Var(Xi) = σ2. Define the sequence

Zn =
(X1 − µ) + (X2 − µ) + · · ·+ (Xn − µ)√

n
.

Then
Zn → N (0, σ2) in distribution.

The central limit theorem implies that if xi, i = 1, . . . , N , is a sample drawn
independently from the distribution of XT , then the estimator

ĝN =
1

N

N∑
i=1

g(xi)

converges in distribution to N (µ, σ
2

N ) where µ = E(g(XT )). This gives the men-
tioned earlier estimate of the Monte Carlo error Var(ĝN ) = O(N−1).

In Monte Carlo computations we need independent samples xi, i = 1, . . . , N ,
from a given distribution. To generate such samples one needs random number
generators with sufficiently good properties. We will describe such generators in
Chapter 2.

1.4 Methods of partial differential equations

Consider a stochastic process given by the equation

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, Xt = x. (1.17)

Let us assume that the coefficients in this equation fulfill the conditions of Theorem
1.2. Hence, the equation possesses a unique strong solution which we denote Xt,x

s

to indicate the dependence on initial data Xt = x.

DEFINITION. 1.11 Let Xt,x
s be a solution of (1.17) with the coefficients b and σ

independent of s. The (infinitesimal) generator A of Xs is defined by

Au(x) = lim
s→t

E
(
u(Xt,x

s )
)
− u(x)

s− t
, x ∈ Rd.

The set of functions u: Rd → R for which the limit exists for all x ∈ Rd, is denoted
by DA and is called the domain of A.
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For a function u ∈ DA

Au(x) =
d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(x)
∂u

∂xi
, where aij =

1

2

m∑
k=1

σki σ
k
j .

When the coefficients in (1.17) are time dependent b = b(t, x) and σ = σ(t, x),
we have the family of operators At

Atu(t, x) =

d∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂u

∂xi
.

The computation of expectation E
(
g(Xt,x

T )
)

can be reduced to a solution of a
partial differential equation due to the following theorem.

THEOREM. 1.12 (Feynman-Kac) Consider the Cauchy problem

− ∂v
∂t −Atv + kv − f = 0, t ∈ [0, T ), x ∈ Rd,

v(T, x) = g(x), x ∈ Rd,
(1.18)

where At is given in Definition 1.11 and is assumed to be uniformly elliptic, i.e.

∃δ > 0,

d∑
i,j=1

aij(t, x)ξiξj ≥ δ|ξ|2, ∀t ∈ [0, T ], x ∈ Rd, ξ ∈ Rd \ {0}.

Assume that the functions k : [0, T ] × Rd → [0,∞), f : [0, T ] × Rd → R and
g: Rd → R are continuous and satisfy (with some constants C and q ≥ 2)

|g(x)| ≤ C(1 + |x|q), or g(x) ≥ 0, ∀x ∈ Rd,

|f(t, x)| ≤ C(1 + |x|q), or f(t, x) ≥ 0, t ∈ [0, T ],∀x ∈ Rd.
(1.19)

Let v(t, x) be a solution of (1.18) which is continuous in [0, T ] × Rd and of class
C1,2

(
[0, T )×Rd

)
with the polynomial growth condition (for some constants C > 0

and p ≥ 2)
sup

t∈[0,T ]
|v(t, x)| ≤ C(1 + |x|p), x ∈ Rd.

Then v(t, x) is a unique solution of (1.18) and admits the stochastic representation

v(t, x) =E
(
g(Xt,x

T ) exp
(
−
∫ T

t
k(r,Xt,x

r )dr
)

+

∫ T

t
f(s,Xt,x

s ) exp
(
−
∫ s

t
k(r,Xt,x

r )dr
)
ds

)
.
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Proof. To simplify the proof we take dXs = dWs with Xt = x, and k = k(x).
Then Atu = 1

2∆u. Consider the expression

v(s,Xs) exp
(
−
∫ s

t
k(Xu)du

)
.

We obtain from Itô’s rule and equation (1.18)

ds

(
v(s,Xs) exp

(
−
∫ s

t
k(Xu)du

))
= exp

(
−
∫ s

t
k(Xu)du

)
×
(
∂v

∂s
ds− k(Xs)vds+

d∑
i=1

∂

∂xi
v(s,Xs)dW

i
s +

1

2
∆v ds

)

= exp
(
−
∫ s

t
k(Xu)du

)(
−f(s,Xs)ds+

d∑
i=1

∂

∂xi
v(s,Xs)dW

i
s

)
.

Let Sn = inf{s ≥ t : |Xs| ≥ n}. We integrate on [t, T ∧ Sn] and compute the
expectation. Since the resulting stochastic integral has expectation zero, we obtain

v(t, x) =E
(∫ T∧Sn

t
f(s,Xs) exp

(
−
∫ s

t
k(Xu)du

)
ds

)
+ E

(
v(Sn, XSn) exp

(
−
∫ Sn

t
k(Xu)du

)
11{Sn≤T}

)
+ E

(
v(T,XT ) exp

(
−
∫ T

t
k(Xu)du

)
11{Sn>T}

)
.

By dominated convergence, the first term in the above sum converges to

E
(∫ T

t
f(s,Xs) exp

(
−
∫ s

t
k(Xu)du

)
ds

)
.

For the second term we have

E
(
v(Sn, XSn) exp

(
−
∫ Sn

t
k(Xu)du

)
11{Sn≤T}

)
≤ E

(
v(Sn, XSn)11{Sn≤T}

)
≤ C(1 + np)Px(Sn ≤ T ).

By the Chebyshev inequality and Theorem 1.2 we have the estimate

Px(Sn ≤ T ) = Px
(

sup
0≤t≤T

|Xt| ≥ n
)

≤ n−k Ex
(

sup
0≤t≤T

|Xt|k
)
≤ Cn−k

(
1 + |x|k

)
.
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Taking k > p, we see that the second term converges to zero.
By the dominated convergence theorem, the third term converges to

E
(
v(T,XT ) exp

(
−
∫ T

t
k(Xu)du

))
.

Since v(T,XT ) = g(XT ) this ends the proof.

The following theorem follows from a probabilistic construction of solutions to
equation (1.18). It can be regarded as the counterpart to the Feynman-Kac theorem.

THEOREM. 1.13 Let Xt,x
s be a strong solution of (1.17). We assume that the

coefficients b(s, x) and σ(s, x) of that equation fulfill the assumptions of Theorem
1.2. In addition, they are twice continuously differentiable with respect to x for any
s ∈ [0, T ] and all their partial derivatives with respect to x up to the second-order
are bounded.

Let k : [0, T ] × Rd → [0,∞), f : [0, T ] × Rd → R and g : Rd → R be
Borel functions that are twice continuously differentiable with respect to x for any
t ∈ [0, T ]. Assume that absolute values of these functions and all their partial
derivatives with respect to x up to the second-order are bounded by C(1 + |x|q)
(with some constants C > 0 and q ≥ 2). Then

u(t, x) =E
(
g(Xt,x

T ) exp
(
−
∫ T

t
k(r,Xt,x

r )dr
)

+

∫ T

t
f(s,Xt,x

s ) exp
(
−
∫ s

t
k(r,Xt,x

r )dr
)
ds

)
is a well defined function in [0, T ]×Rd which is twice differentiable with respect to
x continuously in (t, x) and continuously differentiable with respect to t in [0, T ]×
Rd with the growth estimate (for some constants C > 0 and p ≥ 2)

sup
0≤t≤T

|u(t, x)| ≤ C(1 + |x|p), x ∈ Rd.

The function u(t, x) is a solution of equation (1.18) which fulfills the terminal
condition limt→T u(t, x) = g(x).

Remark. 1.4 Let in addition to the assumptions of Theorem 1.13 functions σji and
bi be n times continuously differentiable with respect to x for any s ∈ [0, T ] (n ≥ 2)
and all partial derivatives of these functions with respect to x up to order n be
bounded. We require also that k, f and g are n times continuously differentiable
with respect to x for any t ∈ [0, T ] and absolute values of these functions and all
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their partial derivatives with respect to x up to order n are bounded byC(1+|x|q).
Then u(t, x) defined by Theorem 1.13 is n times differentiable with respect to x
continuously in (t, x) and continuously differentiable with respect to t in [0, T ]×Rd

with the absolute values of all its partial derivatives with respect to x up to order
n bounded by C(1 + |x|p) for some constants C > 0 and p ≥ 2.

The proof of Theorem 1.13 for sufficiently regular coefficients follows from
theorems of Chapter 5 and Sobolev’s inequalities, but under the assumed regularity,
the proof requires probabilistic solutions of PDEs (see the book by Krylov[32]).
Remark 1.4 can be proved following the line of the proof of Theorem V.7.4 in [32].

The following corollary from the Feynman-Kac theorem is essential in the
derivation of the Black-Scholes equation.

COROLLARY. 1.14 If, in the Black-Scholes model, the price of underlying in a
risk-neutral measure fulfills the equation

dSt = rStdt+ σStdWt,

then the price of the contingent claim with payoff g(ST ) is

Vg(t) = E
(
e−r(T−t)g(ST )

∣∣St = x
)
.

By the Feynman-Kac theorem G(t, x) = E
(
g(ST )|St = x

)
fulfills the equation

∂G

∂t
+ rx

∂G

∂x
+

1

2
σ2x2

∂2G

∂x2
= 0.

Since F (t, x) := Vg(t) = e−r(T−t)G(t, x), we have

∂F

∂t
+ rx

∂F

∂x
+

1

2
σ2x2

∂2F

∂x2
− rF = 0, F (T, x) = g(x),

which is the Black-Scholes equation.

By the Feynman-Kac theorem and the above corollary, computation of E(g(XT ))
can be reduced to the construction of a smooth solution of a certain partial differen-
tial equation. The existence of such solutions and their numerical approximations
will be discussed in Chapters 5, 6, and 7.





Chapter 2

Random number generators

To generate truly random numbers, we have to use a physical device with random
behavior. Such generators are not used in modern digital computers (there are
some exceptions such as generating seeds for pseudo-random generators). ”Ran-
dom numbers” generated by digital computers are obtained by deterministic algo-
rithms. We require only that a sequence of such numbers mimics sufficiently well
the statistical properties of true random numbers. To indicate a deterministic char-
acter of generated sequences we call them pseudo-random numbers. The majority
of generators used in practice are generators of uniform deviates on [0, 1]. Gen-
erators of other distributions are obtained by a suitable transformation of uniform
distributions.

2.1 Generators of uniform deviates

Linear congruential generators are the simplest generators of pseudo-random num-
bers.

DEFINITION. 2.1 A linear congruential generator is a recurrence of the form:

1. Choose x0 (seed);

2. Compute xi = (axi−1 + b)modM for some integers a, b and M ;

3. Compute ui = xi
M .

COROLLARY. 2.2 The properties of sequences generated by linear congruential
generators:

1. xi ∈ {0, 1, . . . ,M − 1};

33



34 CHAPTER 2. RANDOM NUMBER GENERATORS

2. The sequence xi is periodic with period not greater than M .

But a wrong choice of a, b, or M can result in a period much smaller than M !

Sequences {ui} obtained by linear congruential generators should be indepen-
dent samples of a random variable with uniform distribution. We can investigate
this independence by analyzing n-tuples (ui, ui+1, . . . , ui+n−1).

Example. 2.3 Let us consider two-dimensional vectors. We have

xi = (axi−1+ b)modM = axi−1+ b−kM, for kM ≤ axi−1+ b < (k+1)M.

For arbitrary z0, z1, we obtain

z0xi−1 + z1xi = z0xi−1 + z1(axi−1 + b− kM)

= xi−1(z0 + az1) + z1b− z1kM =M
(
xi−1

z0 + az1
M

− z1k
)
+ z1b.

Denoting the quantity in parenthesis by c we obtain the equation

z0ui−1 + z1ui = c+ z1bM
−1. (2.1)

Figure 2.1: The points (ui−1, ui) for a = 1229, b = 1, M = 2048.

That is the equation of a straight line. Choosing integers z0 and z1 and re-
quiring z0 + az1 = 0modM we obtain c which is integer. That observation will
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be used in the subsequent analysis. The straight line given by equation (2.1) de-
pends on i, since c is a function of xi−1. We expect sufficiently many of such lines
covering densely the square [0, 1)2. But that expectation appears to be wrong in
many practical situations. For many a and M the points (ui−1, ui) lie on very
few straight lines. As an example consider the linear congruential generator with
a = 1229, b = 1, M = 2048 and x0 = 1. Choosing z0 = −1, and z1 = 5, we
get −1 + 1229 · 5 = 6144 = 3 · 2048 = 0mod 2048 which gives an integer c.
By equation (2.1) and inequality 0 ≤ ui < 1, the value of c can only be a number
from {−1, 0, 1, 2, 3, 4}. Hence, there are only 6 straight lines on which vectors
(ui−1, ui) lie. Figure 2.1 shows the picture of such vectors for 5000 simulations.
In that picture we observe only 5 lines. The explanation comes from the fact that
c = −1 corresponds to the straight line which is in the lower right corner of the
figure and is not visible.

A better choice of a, b and M can produce a better picture. Let us take a =
216 + 3, b = 0, M = 231. As Figure 2.2 suggests, we obtained a deceptively good
congruential generator.

Figure 2.2: The points (ui−1, ui) for a = 216 + 3, b = 0, M = 231.

This positive picture breaks down with 3-dimensional vectors (ui−2, ui−1, ui).
Figure 2.3 shows that 3-dimensional vectors are concentrated on a small number
of planes in the 3-dimensional cube [0, 1)3 (analysis similar as for the previous
generator reveals that there are 15 such planes).

The bad behavior of linear congruential generators observed in the above ex-
ample is not exceptional. The following theorem due to Marsaglia [38], which we
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Figure 2.3: The points (ui−2, ui−1, ui) for a = 216 + 3, b = 0, M = 231.

present without proof, explains that such behavior is typical.

THEOREM. 2.4 For each linear congruential generator there is an n≪M such
that n-tuples (ui, ui+1, . . . , ui+n−1) lie on a relatively low number of hyperplanes
in Rn.

To avoid the effect of correlation described above, one uses more sophisticated
generators, for example – the generalized congruential generators

xi = (a1xi−1 + · · ·+ akxi−k)modM.

L’Ecuyer [34] recommends designing mixed generators from several generalized
congruential generators. Taking J generalized generators

xj,i = (aj,1xj,i−1 + · · ·+ aj,kxj,i−k)modMj , j = 1, . . . , J,

we can construct the mixed generator

zi = (b1x1,i + · · ·+ bJxJ,i)modM1,

where b1, . . . , bJ are integers and M1 is the largest of all Mj . It appears that se-
quences generated by such a generator are equivalent to sequences generated by a
single generalized congruential generator with M , which is the product of Mj , but
with better statistical properties.
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As mixed generators, we can also use the Fibonacci generators

xi = xi−n ⊙ xi−k modM for some n and k,

where ⊙ denotes addition, subtraction, or multiplication.
To guarantee the ”good” properties of such generators a long seed is required,

which has to be generated by another generator.
Nowadays in common use is the generator by Matsumoto and Nishimura [39]

called Mersenne Twister. This generator has period (219937−1), and no correlation
has been observed for vectors to dimension 623.

2.2 Non-uniform variates

Pseudo-random number generators usually produce samples from a uniform dis-
tribution. To obtain samples from other distributions, we have to apply certain
transformations.

Discrete distribution

To obtain a sample from the discrete distribution X

P(X = ai) = pi, i = 1, . . . , n,

we apply the following algorithm:

1. Compute ck =
∑k

i=1 pi, k = 1, . . . , n;

2. Generate u ∼ U(0, 1);

3. Find the smallest k such that u ≤ ck;

4. Put Z = ak.

Such Z is a sample from the distribution of X .

Inversion

THEOREM. 2.5 Let a random variable X possess a continuous and strictly in-
creasing cumulative distribution function FX and u ∼ U(0, 1). Then F−1

X (u) is a
sample of X .

Proof. The condition u ∼ U(0, 1) means PU (u ≤ ξ) = ξ for ξ ∈ [0, 1). Hence,
PU (F

−1
X (u) ≤ x) = PU (u ≤ FX(x)) = FX(x).
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Acceptance–rejection method

Let X be a random variable with density f(x), but sampling from that density
be complicated (large computational complexity). Assume that there is another
random variable Y with density g(x) which is easily simulated. Let f(x) ≤ C g(x)
for a constant C < +∞.

The following algorithm generates samples of X:

1. Generate x from the density of Y and u ∼ U(0, 1).

2. If u ≤ f(x)
C g(x) , accept x as a sample of X . Otherwise return to p. 1.

THEOREM. 2.6 The described above algorithm generates a sample of X .

Proof. Let

A =
{
ω: U(ω) ≤ f(Y (ω))

C g(Y (ω))

}
.

Then

P(Y ∈ dx|A) = P(A ∩ {Y ∈ dx})
P(A)

=
g(x) f(x)

C g(x)dx∫
R g(y)

f(y)
C g(y)dy

=
f(x)dx∫
R f(y)dy

= f(x)dx = P(X ∈ dx),

where the value of P(A) is obtained by the following computation

P(A) = P
(
U ≤ f(Y )

C g(Y )

)
= E

(
P
(
U ≤ f(Y )

C g(Y )

∣∣∣Y ))
= E

( f(Y )

C g(Y )

)
=

∫
R

f(y)

C g(y)
g(y)dy =

1

C

∫
R
f(y)dy.

Transformation of random variables

The theorem below follows easily from the change of variables theorem.

THEOREM. 2.7 Let X be a random variable in Rd with a positive density ϕ
supported on S. Assume that a transformation g: S → B, S,B ⊂ Rd, is invertible
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and that the inverse is continuously differentiable on B (is C1(B)). Then Y =
g(X) has the density

ϕ
(
g−1(y)

)∣∣∣∣∂(x1, . . . , xd)∂(y1, . . . , yd)

∣∣∣∣, y ∈ B,

where x = g−1(y) and ∂(x1,...,xd)
∂(y1,...,yd)

denotes the Jacobian matrix of g−1.

We can apply the transformation method to generate samples from a normal
distribution.

Example. 2.8 (Box-Muller algorithm) We define the transformation

y1 =
√
−2 lnx1 cos 2πx2 = g1(x1, x2),

y2 =
√

−2 lnx1 sin 2πx2 = g2(x1, x2),

for (x1, x2) ∈ [0, 1]2.
The inverse transformation is given by

x1 = exp
(
−1

2
(y21 + y22)

)
,

x2 =
1

2π
arctan

y2
y1
.

The Jacobian matrix is as follows

det

(
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

)
=

1

2π
exp
(
−1

2
(y21 + y22)

)(
−y1

1

1 +
y22
y21

1

y1
− y2

1

1 +
y22
y21

y2
y21

)

= − 1

2π
exp
(
−1

2
(y21 + y22)

)
.

The above computations show that
∣∣∣ det(∂(x1,x2)

∂(y1,y2)

)∣∣∣ is the density of a 2-dimensional
standardized normal variable.

When X ∼ U(0, 1)2, then Y = (g1(X), g2(X)) is a 2-dimensional standard-
ized normal variable and Y1, Y2 are i.i.d.

Remark. 2.1 (Neave effect) In 1973, H. R. Neave [43] discovered a surprising
result of applying the Box-Muller algorithm to a sample obtained from a linear
congruential generator. Since the density of normal distribution is supported on
the whole R, we can expect that the pairs (Y1, Y2) will cover the whole R2. Con-
trary to that expectation the generated pairs fall into a small range (rectangle)
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Figure 2.4: The Neave effect for the Box-Muller algorithm.

around zero. This surprising behavior is illustrated in Figure 2.4 obtained for 107

simulations. The Neave effect has been observed for the Box-Muller algorithm and
other uniform generators. There is a suspicion that the effect can also occur for
other random number generators.

Example. 2.9 (Marsaglia’s polar method) The Box-Muller algorithm has been
improved by Marsaglia to avoid the use of trigonometric functions. That modifi-
cation is important, since the computation of trigonometric functions is very time-
consuming. Marsaglia’s algorithm replaces the evaluation of trigonometric func-
tions in the Box-Muller algorithm by the acceptance-rejection method:

1. Generate u1, u2 ∼ U(0, 1).

2. Perform transformation v1 = 2u1 − 1, v2 = 2u2 − 1. Then v1, v2 ∼
U(−1, 1).

3. Accept a pair (v1, v2), when v21+v
2
2 ≤ 1. Such a pair is uniformly distributed

on D = {(v1, v2): v21 + v22 ≤ 1}.



2.3. MULTIVARIATE RANDOM VARIABLES 41

4. Every pair (v1, v2) ∈ D can be considered as defined by the polar coordi-
nates (z, θ):

v1 = z cos θ, v2 = z sin θ.

The variates w = z2 and θ are independent: w ∼ U(0, 1), θ ∼ U(0, 2π).

5. The variables

y1 =

√
− lnw

w
v1, y2 =

√
− lnw

w
v2

are normally distributed and independent.

The pair y1, y2 is normally distributed by the Box-Muller algorithm. Since θ =
arctan v2

v1
, then, taking x1 = v21 + v22 ≡ w and x2 = 1

2πθ, we obtain x1, x2 ∼
U(0, 1), where cos(2πx2) = v1√

w
and sin(2πx2) = v2√

w
. These transformations

reduce the Marsaglia algorithm to the Box-Muller algorithm.

Example. 2.10 The Box-Muller and Marsaglia algorithms are not sufficiently ac-
curate for financial applications. There are many algorithms using inversion to
provide more accurate normal distributions. As an example, we present the modifi-
cation by Moro [41] of the Beasley-Springer algorithm [4] with accuracy 3×10−9.
But there are algorithms with higher accuracy, and compatible computational com-
plexity (cf. [48]). For 0.5 ≤ y < 0.92, the Beasley-Springer-Moro algorithm uses
the formula

F−1(y) ≈
∑3

n=0 an(y − 0.5)2n+1

1 +
∑3

n=0 bn(y − 0.5)2n+2
,

and for y ≥ 0.92, the formula

F−1(y) ≈
8∑

n=0

cn

(
ln
(
− ln(1− y)

))n
.

Constants for the Beasley-Springer-Moro algorithm are given in Table 2.1.
The case 0 ≤ y ≤ 0.5 is handled by symmetry.

2.3 Multivariate random variables

Multivariate distributions are usually obtained from one-dimensional distributions.
But only in very particular situations, multivariate distributions can be obtained as
the Cartesian product of univariate distributions.
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a0 = 2.50662823884 b0 = -8.47351093090
a1 = -18.61500062529 b1 = 23.08336743743
a2 = 41.39119773534 b2 = -21.06224101826
a3 = -25.44106049637 b3 = 3.13082909833

c0 = 0.3374754822726147 c5 = 0.0003951896511919
c1 = 0.9761690190917186 c6 = 0.0000321767881768
c2 = 0.1607979714918209 c7 = 0.0000002888167364
c3 = 0.0276438810333863 c8 = 0.0000003960315187
c4 = 0.0038405729373609

Table 2.1: Constants for the Beasley-Springer-Moro algorithm.

Uniform distribution

A multidimensional uniform distribution can be obtain as a tuple of indepen-
dent one-dimensional distributions (U1, . . . , Ud), where Ui ∼ U(0, 1).

Normal variates

A standardized d-dimensional normal distribution Nd(0, Id), where Id is d-di-
mensional identity matrix, can be obtained from one-dimensional normal distribu-
tions

X ∼ Nd(0, Id) ⇐⇒ X = (X1, . . . , Xd), where Xi ∼ N (0, 1), Xi are i.i.d.

This is due to the form of the density of d-dimensional normal variable Nd(µ,Σ)

ϕ(x) =
1

(2π)d/2
1

(detΣ)1/2
exp
(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

For µ = 0 and Σ = Id this density is the product of standardized one-dimensional
densities. Knowing the density of a correlated normal distribution, we can design a
transformation of a standardized normal distribution Nd(0, Id), which can be used
to generate samples from the correlated distribution.

LEMMA. 2.11 Let Z ∼ Nd(0, Id) and A be a nonsingular matrix of dimension
d× d. Then AZ ∼ Nd(0, AA

⊤) and µ+AZ ∼ Nd(µ,AA
⊤).

Proof. Let X = AZ and ϕ(z) be the density of Z. By the substitution x = Az we
obtain

exp
(
−1

2
z⊤z
)
= exp

(
−1

2
(A−1x)

⊤
(A−1x)

)
= exp

(
−1

2
x⊤(A−1)

⊤
A−1x

)
.
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Changing variables we get∫
Rd

ϕ(z)dz =

∫
Rd

ϕ(x)| detA|−1dx

=

∫
Rd

1

| detA|
1

(2π)d/2
exp
(
−1

2
x⊤
(
AA⊤

)−1
x
)
.

Hence,
1

|detA|
1

(2π)d/2
exp
(
−1

2
x⊤
(
AA⊤

)−1
x
)

is the density of Nd(0, AA
⊤).

To generate a sample from Nd(µ,Σ) we have to find a matrix A, such that
Σ = AA⊤. The covariance matrix Σ is symmetric and positive definite. Hence, we
find A by the Cholesky decomposition of Σ.

Remark. 2.2 To generate samples from Nd(µ,Σ) we can use spectral decompo-
sition of Σ. Since Σ is symmetric, positive definite matrix, it has d positive eigen-
values and d eigenvectors which span Rd and Σ = ΓΛΓ⊤, where Λ is the diagonal
matrix of eigenvalues and Γ is the matrix of eigenvectors. If Z ∼ Nd(0, Id), then
µ + ΓΛ1/2Z ∼ Nd(µ,Σ). Let us observe that Λ1/2 is well defined due to the
positivity of eigenvalues.

Remark. 2.3 In general, the Cholesky decomposition and the spectral decompo-
sition construction do not give same results. Indeed

Σ = AA⊤ = ΓΛΓ⊤ = ΓΛ1/2Λ1/2Γ⊤,

and
Σ(A⊤)−1 = A = ΓΛ1/2Λ1/2Γ⊤(A⊤)−1

holds. But in general
Λ1/2Γ⊤(A⊤)−1 ̸= Id.

Hence
AZ ̸= ΓΛ1/2Z

although both methods generate samples from Nd(µ,Σ).

In implementations, the Cholesky decomposition is more effective. In the
Cholesky factorization, the matrix A is lower triangular. It makes calculations
of AZ particularly convenient because it reduces the calculations complexity by
the factor of 2 compared to the multiplication of Z by the full matrix ΓΛ1/2. In
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addition, the error propagates much slower in the Cholesky factorization. There
are, however, situations in which using spectral decomposition gives some advan-
tages. The eigenvalues and eigenvectors of the covariance matrix have a statistical
interpretation that is sometimes useful. Examples of such uses are in some variance
reduction methods.

Other multi-dimensional distributions

Uniform or normal distributions are rather exceptional examples of design-
ing multivariate distributions as products of one-dimensional distributions. In the
majority of situations generating samples from multivariate distributions requires
special algorithms.

A good example is an algorithm of sampling from d-dimensional Student t-
distribution td(ν, µ,Σ), where ν is the number of degrees of freedom, µ – location
vector, and Σ – dispersion matrix. To generate samples from the d-dimensional
Student t-distribution we can use the formula

td(ν, µ,Σ) ∼
Nd(µ,Σ)√

χ2
ν/ν

,

where χ2
ν denotes an independent chi-square distribution with ν degrees of free-

dom. Using the above relation to generate a sample from td(ν, µ,Σ) we have to
generate two independent samples: one from Nd(µ,Σ) and another from χ2

ν .
As another example, we can consider sampling from d-dimensional asymmet-

ric Laplace distribution ALd(m,Σ). This class of distributions is suitable for mod-
eling heavy tailed multivariate data, which retain the finiteness of moments. To
generate samples from Y ∼ ALd(m,Σ) we generate a sample from Nd(0,Σ), an
independent sample from a standard exponential distribution Ex(1), and use the
representation of the asymmetric Laplace distribution

ALd(m,Σ) ∼ mEx(1) +
√
Ex(1)Nd(0,Σ).

2.4 Low discrepancy sequences

Assume that we have to compute a definite integral
∫ 1
0 f(x)dx. When function

f(x) is complicated, we can approximate the value of this integral by a numeri-
cal procedure. To this end, we can use the Monte Carlo method, which gives the
approximation error O(N−1/2) (see Chapter 1). On the other hand, we can ap-
ply a deterministic quadrature dividing interval [0, 1] into N subintervals of equal
length and using trapezoidal approximation. The error of such an approximation is
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O(N−1), which is much better than the Monte Carlo error (in addition, this error
is deterministic contrary to the Monte Carlo error, which is of statistical nature).

On the other hand, the error estimate obtained in advance gives only the order
of error magnitude. The exact value can be reasonably approximated only after
computations. If the computed error is larger than the assumed accuracy, we have
to repeat computations with a larger N . For the deterministic trapezoidal method,
that requires the repetition of the whole computations for a new larger N . The
Monte Carlo method is much more flexible: we sample additional numbers and
perform computations only for these additional numbers, preserving the previously
computed values. The idea of low discrepancy sequences is a compromise between
numerical quadratures giving deterministic error and advantages of Monte Carlo
which enables free placing of sample points until the desired accuracy is met. The
most important advantage of low discrepancy sequences is the improvement of
error estimates to O(N−(1−ϵ)) independently of the problem dimension which is
significantly better than in Monte Carlo methods (in fact, the constant in the error
estimate depends on the dimension, and the picture is not as good as the expression
O(N−(1−ϵ)) can suggest).

DEFINITION. 2.12 Let {un}n≥1 be a sequence of points in [0, 1]d. This point set
is called uniformly distributed in [0, 1]d, if for each cube Qy = {x ∈ [0, 1]d: 0 ≤
xi ≤ yi, i = 1, . . . , d} defined by y ∈ [0, 1]d, the equality holds

lim
N→∞

1

N

N∑
n=1

χQy
(un) = vol(Qy).

DEFINITION. 2.13 For a sequence u = {u1, . . . , uN} of points from [0, 1]d and
Qy, y ∈ [0, 1]d, we define

F (y) = vol(Qy), F u
N (y) =

1

N

N∑
n=1

χQy
(un).

The star discrepancy is given by

D∗
N (u) = sup

y∈[0,1]d
|F (y)− F u

N (y)|.

Remark. 2.4 By the definition of discrepancy if u = {u1, . . . , uN} is a subse-
quence of a uniformly distributed sequence {un}n≥1, then limN→∞D∗

N (u) = 0.

THEOREM. 2.14 (Koksma-Hlawka inequality) Let f : [0, 1]d → R be a func-
tion of bounded variation. For each sequence u = {u1, . . . , uN} in [0, 1]d∣∣∣∣ ∫

[0,1]d
f(x)dx− 1

N

N∑
n=1

f(un)

∣∣∣∣ ≤ V (f)D∗
N (u),
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where V (f) is the Hardy-Krause variation of f in [0, 1]d.

Proof. For simplicity we will consider only a one-dimensional case assuming in
addition that f is of class C1([0, 1]) (for a more complete proof see [16]). Then
the Hardy-Krause variation is the total variation which for f ∈ C1([0, 1]) is equal
V (f) =

∫ 1
0 |f ′(x)|dx.

Let us take a sequence of points u = {u1, . . . , uN} in [0, 1]. Using identity
f(x) = f(1)−

∫ 1
x f

′(y)dy we obtain∫ 1

0
f(x)dx− 1

N

N∑
n=1

f(un) =
1

N

N∑
n=1

∫ 1

un

f ′(y)dy −
∫ 1

0

∫ 1

x
f ′(y)dy dx

=

∫ 1

0

1

N

N∑
n=1

11(un,1](y)f
′(y)dy −

∫ 1

0

∫ y

0
f ′(y)dx dy

=

∫ 1

0
f ′(y)

(
1

N

N∑
n=1

11(un,1](y)− y

)
dy.

Let us observe that for a given y

1

N

N∑
n=1

11(un,1](y) =
1

N

N∑
n=1

11[0,y)(un).

The right hand side of this equality is F u
N (y) by Definition 2.13. Since in one

dimension F (y) = y, we obtain∫ 1

0
f(x)dx− 1

N

N∑
n=1

f(un) =

∫ 1

0
f ′(y)

(
F u
N (y)− F (y)

)
dy.

Hence ∣∣∣∣ ∫ 1

0
f(x)dx− 1

N

N∑
n=1

f(un)

∣∣∣∣ ≤ ∫ 1

0
|f ′(y)|

∣∣(F u
N (y)− F (y)

∣∣dy
≤ sup

y∈[0,1]

∣∣(F u
N (y)− F (y)

∣∣ ∫ 1

0
|f ′(y)|dy = V (f)D∗

N (u).

DEFINITION. 2.15 A sequence u = {u1, . . . , uN} in [0, 1]d is called the low
discrepancy sequence, if

D∗
N (u) = O

(
(lnN)d

N

)
.
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Remark. 2.5 One can prove that if U = {U1, . . . , UN} is a sequence of indepen-
dent random variables with uniform distribution on [0, 1]d, then samples from this
sequence are uniformly distributed on [0, 1]d. For the discrepancy of such samples,
we have the estimate

E
(
D∗

N (U)
)
=

Cd√
N
, where Cd = O(ln lnN),

which shows that the discrepancy of a sequence of random variables is of order
N−1/2.

Example. 2.16 (Halton sequences) This is an example of an easily computed se-
quence of low discrepancy.

Let b ≥ 2 be a prime number. As is well known, each integer n can be expanded
in the basis b

n = a0 + a1b+ · · ·+ akb
k, where ai ∈ {0, 1, . . . , b− 1}.

For n with the above expansion we define the radical-inverse function

Ψb(n) =
a0
b

+
a1
b2

+ · · ·+ ak
bk+1

.

Then the b-adic van der Corput sequence is defined as the one-dimensional se-
quence {Ψb(n)}n∈N.

Van der Corput sequences are used as ingredients in the construction of Halton
sequences. The Halton sequence of dimension d is a sequence u = {ui} in [0, 1]d

defined for b1, . . . , bd pairwise prime numbers as the sequence of vectors

ui =
(
Ψb1(i),Ψb2(i), . . . ,Ψbd(i)

)
.

One can prove (but the proof is not easy, see [16]) that the Halton sequence is a
sequence of low discrepancy

D∗
N (u) ≤ C

(lnN)d

N
, for a constant C > 0.

Although the Halton sequence is a low discrepancy sequence, it is not advised
for computation of high dimensional integrals since in pairs of the van der Cor-
put sequences for large bases occur cycles with decreasing periods. The Halton
sequence is a good choice for moderate dimensions where the bases of the van
der Corput sequences are not too large. For higher dimensions, one can use the
Sobol’, Faure, or Niederreiter sequences which are obtained by permuting terms
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in the van der Corput sequences for small bases (in the construction of Sobol’ se-
quences only number representation in basis 2 is used). The construction of these
sequences is rather involved and its detailed description is beyond the scope of
these lecture notes. The interested reader can consult the book by Glasserman [21]
and the references cited herein.

The computational method, which uses as nodes of approximation low dis-
crepancy sequences, is called the Quasi Monte Carlo method. From the Koksma-
Hlawka inequality and the definition of low discrepancy sequences, we obtain an
error estimate for this method O(N−(1−ϵ)). Hence, the estimate is better than for
the Monte Carlo method with nodes obtained from pseudo-random numbers. Since
by Quasi Monte Carlo methods, we can compute only multidimensional integrals,
then we need to transform financial problems into such integrals.



Chapter 3

Monte Carlo methods

The history of Monte Carlo methods goes back to Stanislaw Ulam who working on
the Manhattan Project suggested to John von Neumann that the newly developed
ENIAC computer would give them the means to carry out calculations based on
statistical sampling.

The name "the Monte Carlo method" is attributed to their coworker Nicholas
Metropolis who was partly inspired by Ulam’s anecdotes of his gambling uncle
who "just had to go to Monte Carlo". In print the name has appeared for the first
time in the paper: N. Metropolis, S. Ulam – The Monte Carlo method, Journal of
American Statistical Association, 44 (1949). Phelim Boyle [8] was the first who in
1977 used Monte Carlo methods in quantitative finance to compute option prices.

3.1 Monte Carlo integration

Consider the Monte Carlo (MC) computation of expected value E(X) of a random
variable X with a known distribution. The simplest algorithm, the so-called crude
Monte Carlo, can be summarized as follows:

1. Generate a sample X1, . . . , XN from the distribution of X .

2. Compute the sample average

X̂ =
1

N

N∑
i=1

Xi.

The following theorem, which follows from the strong law of large numbers,
gives a theoretical foundation for MC simulations.

49
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THEOREM. 3.1 Let X1, . . . , XN be an i.i.d. sample from the distribution of X ,
where E(X) = µ, Cov(X) = Σ. Let X̂N denote the sample mean value and
Σ̂N , the sample covariance matrix (subscript N indicates that these moments are
computed from an N -element sample). Then:

1. E(X̂N ) = µ.

2. E(Σ̂N ) = Σ.

3. limN→∞ X̂N = µ, a.s.

4. limN→∞ Σ̂N = Σ, a.s.

By the central limit theorem, we have the following corollary.

COROLLARY. 3.2 If X is one-dimensional (Σ = σ2), then
√
N
(
X̂N − E(X)

)
→ N (0, σ2) in distribution.

Therefore, if zα denotes α-quantile of a standardized normal distribution, then
σzα/2√
N

< X̂N − E(X) <
σz1−α/2√

N
.

DEFINITION. 3.3 The confidence interval with a confidence level α for X̂N is(
X̂N −

σz1−α/2√
N

, X̂N −
σzα/2√
N

)
.

Since z1−α/2 = −zα/2, this confidence interval can be written as(
X̂N −

σz1−α/2√
N

, X̂N +
σz1−α/2√

N

)
.

Remark. 3.1 In real simulations, we do not know the true value of variance σ and
we replace that value with the sample variance

σ̂2 =
1

N − 1

N∑
j=1

(Xj − X̂)2 =
1

N − 1

N∑
i=j

X2
j − N

N − 1
X̂2.

Let Φ be the cumulative distribution function of a standardized normal variable.
Then we have the identity

Φ(z1−α/2)− Φ(zα/2) = (1− α/2)− α/2 = 1− α.

Hence, if Iα is the confidence interval with a confidence level α, then P(E(X) ∈
Iα) = 1 − α, i.e., the confidence interval Iα contains the true value of E(X) with
probability (1− α).
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MC simulations of E(g(X))

W have earlier remarked that for a random variable X with a known density
ϕX the computation of E(g(X)) can be reduced to

E
(
g(X)

)
=

∫
Rd

g(x)ϕX(x)dx =

∫
[0,1]d

f(x)dx,

which can be treated as the mean value E(f(Y )) for a random variable Y with
uniform distribution on [0, 1]d. The simulation algorithm of crude Monte Carlo is
then:

1. Generate a sample Y1, . . . , YN from the uniform distribution of Y on [0, 1]d.

2. Compute the average f̂ = 1
N

∑N
j=1 f(Yj), which approximates the integral.

THEOREM. 3.4 Let f ∈ L2([0, 1]d) and

V 2(f) =

∫
[0,1]d

f2(x)dx−
(∫

[0,1]d
f(x)dx

)2

<∞.

f̂ computed by the crude Monte Carlo algorithm has the following properties:

1. f̂ → E(f(Y )) for N → ∞, a.s.

2. Let δ̂ =
∫
[0,1]d f(x)dx− f̂ then Var(δ̂) = V 2(f)

N .

Proof. If Y1, . . . , YN are i.i.d., then f(Y1), . . . , f(YN ) are i.i.d. too, since f ∈ L2

can be approximated by simple functions. The convergence f̂ → E(f(Y )) follows
from the strong law of large numbers.

To compute Var(δ̂) we observe that E(δ̂) = 0 which follows from the equality
E(f̂) = E(f(Y )) valid by the i.i.d. property of Y1, . . . , YN . Then we get

Var(δ̂) = E(δ̂2) = E
(∫

[0,1]d
f(x)dx− 1

N

N∑
j=1

f(Yj)

)2

.

Let us denote v(x) :=
∫
[0,1]d f(x)dx− f(x). Then

Var(δ̂) = E
(

1

N2

( N∑
j=1

v(Yj)
)2)

,

due to the equality
∫
[0,1]d f(x)dx = 1

N

∑N
j=1

∫
[0,1]d f(x)dx.
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Since v(Yj) are i.i.d., we have E
(
v(Yi)v(Yj)

)
= 0, for i ̸= j. These equalities

supplemented with E(v(Yj)) = 0 give

Var(δ̂) =
1

N2

N∑
j=1

E
(
v2(Yj)

)
=

1

N
Var
(
v(Y )

)
=

1

N

∫
[0,1]d

v2(x)dx.

On the other hand Var
(
v(Y )

)
= V 2(f), as

Var
(
v(Y )

)
=

∫
[0,1]d

v2(x)dx =

∫
[0,1]d

f2(x)dx−
(∫

[0,1]d
f(x)dx

)2

.

3.2 Variance reduction methods

We have seen that the size of the confidence interval is determined by the value
of
√
Var(X)/

√
N . We would like to find a method to decrease the size of this

interval by other means than increasing the sample size N , which is usually very
costly (computational complexity is, in the majority of cases, a linear function
of N ). These methods are called variance reduction methods, and we describe a
number of them. We illustrate these methods by examples taken from quantitative
finance.

Importance sampling

Suppose that we want to compute x = E(X). The concept of importance sampling
is to modify the distribution of X so that most of the sampling is done on those
regions which contribute the most to x. We modify the initial distribution P(dω) of
X to an importance sampling distribution P̃(dω) such that x = E(X) = Ẽ(LX),
where L = dP

dP̃ is the Radon-Nikodym derivative. The problem is to make an

efficient choice of the modified distribution P̃(dω).

THEOREM. 3.5 Let X be a random variable with a distribution P. Let us define
P∗ by the Radon-Nikodym derivative

dP
dP∗ =

E|X|
|X|

= L∗, i.e., P∗(dω) =
1

L∗P(dω).

Then the importance sampling estimator of x = E(X) under measure P∗ has
smaller variance than any other estimator obtained by a change of measure. If
X ≥ 0, P a.s., then the P∗-variance of the importance sampling estimator is equal
to 0.
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Proof. Let X1, . . . , XN be an i.i.d. sample of X . The importance sampling esti-
mator under measure P∗ is

x̂∗ =
1

N

N∑
j=1

XjL
∗(Xj).

Its variance is
Var∗(x̂∗) = Var∗(XL∗).

We have by the definition of L∗

E∗
((
XL∗)2) = E∗

(
|X|2

(
L∗)2) = E∗

((
E|X|

)2)
=
(
E|X|

)2
.

If P̃ is another measure with the Radon-Nikodym derivative L̃ such that E(X) =
Ẽ(XL̃), then (

E|X|
)2

=
(
Ẽ
(
|X|L̃

))2
≤ Ẽ

((
XL̃

)2)
.

Hence
E∗
((
XL∗)2) ≤ Ẽ

((
XL̃

)2)
.

Since x = E(X) = E∗(XL∗) = Ẽ(XL̃), we obtain Var∗(XL∗) ≤ Ṽar(XL̃).
If X ≥ 0, then

Var∗(XL∗) = E∗((XL∗)2
)
−
(
E∗(XL∗)

)2
=
(
E(X)

)2 − (E(X)
)2

= 0.

Remark. 3.2 The choice of measure suggested by Theorem 3.5 can never be imple-
mented in practice since to obtain L∗ we have to know E|X| and this is the value,
we want to estimate. Nevertheless, Theorem 3.5 suggests that variance reduction
can be achieved by sampling in proportion to |X(ω)|.

Example. 3.6 Suppose that we want to compute z = P(X ∈ A), where X is a
d-dimensional Gaussian random vector with mean 0 and covariance matrix D.
Theorem 3.5 suggests sampling in proportion to ϕX(x)11x∈A, where ϕX is the den-
sity of X . The rapid decay of ϕX(x) for large x suggests sampling in the vicinity
of point x∗, where ϕX has a maximum over A. Hence, the distribution P̃(dω)
can be obtained by a shift of P(dω), with mean 0, to P̃(dω), with mean x∗. This
gives L = ϕX

ϕ̃X
, where ϕ̃X is the density with mean x∗. Knowing the Gaussian

distribution formula we obtain

L = exp
(
−(x∗)⊤D−1X +

1

2
(x∗)⊤D−1x∗

)
.
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Example. 3.7 A special case of the previous example is the computation of VaR
of an investment portfolio. Let us recall

VaRα(X) = inf
x
P(−X ≤ x) ≥ 1− α.

Usually, VaR is estimated by computing P(−X > x) for a sequence of different x
and choosing x corresponding to the prescribed confidence level α.

For an investment portfolio of d assets with prices S = (S1, . . . , Sd) following
a normal distribution, we have to compute P(−X > x) = P(−w⊤S > x), where
w are the weights of assets in the portfolio.

Assume, like in the previous example, S ∼ N (0, D). To implement the im-
portance sampling technique, we have to know x∗ ∈ Rd, a point in which the
distribution of S has the maximum over −w⊤S > x. That leads to the following
optimization problem max

z
exp
(
−1

2z
⊤D−1z

)
,

−w⊤z > x.

This problem is equivalent to {
max

z
−1

2z
⊤D−1z,

−w⊤z > x,

which can be solved by the Lagrange multipliers giving

z∗ = − x

w⊤Dw
Dw.

Inserting that z∗ as x∗ into the formula from the previous example we obtain the
importance sampling change of measure in the MC simulations for VaRα(X).

Remark. 3.3 In practice we are interested in computing VaR of losses over a
certain time interval. Let the loss be given by −X = V (t0 +∆t)− V (t0) = ∆V ,
where V is the portfolio value. By a first-order approximation we get ∆V ≃
∂V
∂t ∆t +

∂V
∂S∆S. Assuming that ∆S has a multivariate normal distribution, we

obtain

P(−X > x) ≃ P
(∂V
∂S

∆S > x− ∂V

∂t
∆t
)
.

Hence, the problem is reduced to the problem analyzed in the last example.
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Antithetic variates

To implement antithetic variates, we generate N i.i.d. random pairs

(X1, X2), (X3, X4), . . . , (X2N−1, X2N ).

We assume that variables X2j−1, X2j have identical variances and negative corre-
lations, for j = 1, . . . , N .

Then

Var
( 1

2N

2N∑
i=1

Xi

)
=

1

N
Var
(X1 +X2

2

)
=

1

4N

(
2σ2(X1) + 2σ2(X1)ρ

)
=

1

2N
σ2(X1)(1 + ρ),

where ρ is the correlation of X1 and X2.
Hence, we have to choose X2j−1, X2j to make ρ possibly close to −1. There

is no simple method for such a choice. The following theorem is a step further to
identifying a suitable candidate.

THEOREM. 3.8 Let X be a one-dimensional random variable with a symmetric
density ϕ(x), i.e., X and −X have the same density. If g is a monotonic function
and E

(
g(X)

)
< +∞, then

Corr
(
g(X), g(−X)

)
≤ 0.

The above inequality is sharp if g is strictly monotonic over a set of positive P-
measure, where P is implied by the distribution of X .

Proof. Let m = E
(
g(X)

)
< +∞, c = inf{y ∈ R: g(y) ≥ m}. Then we get∫

R

(
g(x)−m

)(
g(−x)−m

)
ϕ(x)dx

=

∫
R

(
g(x)−m

)(
g(−x)− g(−c)

)
ϕ(x)dx

+
(
g(−c)−m

) ∫
R

(
g(x)−m

)
ϕ(x)dx.

Since (
g(x)−m

)(
g(−x)− g(−c)

)
≤ 0

and by definition
∫
R
(
g(x)−m

)
ϕ(x)dx = 0, then

Cov
(
g(X), g(−X)

)
=

∫
R

(
g(x)−m

)(
g(−x)−m

)
ϕ(x)dx ≤ 0.
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If g(x) is strictly monotonic over ϕ(x) > 0, then(
g(x)−m

)(
g(−x)− g(−c)

)
< 0, a.s.

and the integral is strictly less than zero.

Example. 3.9 A standard example of antithetic variates appears in the computa-
tion of option prices in the Black-Scholes model. Since the price of the underlying
is

XT = X0 exp
((
r − σ2/2

)
T + σWT

)
,

we take as an antithetic variate

X−
T = X0 exp

((
r − σ2/2

)
T − σWT

)
,

hence WT is replaced by −WT .
As WT has symmetric density, for a monotonic g(XT ) the function f(WT ) =

g(XT ) is monotonic as the superposition of a monotonic function g with the strictly
increasing exponential function. Hence, for a monotonic g, the use of antithetic
variates in the Black-Scholes model gives always a reduction of variance.

Control variates

The idea behind the control variates is as follows. We wish to estimate x = E(X).
Suppose that we can somehow find another random variable Y , which is close to
X in some sense and has known expectation y = E(Y ).

Let x̂ and ŷ be estimators of x and y, respectively. Then the control variate
estimator is

x̂cv = x̂+ α(ŷ − y).

The optimal choice of α should minimize the variance of the control variate esti-
mator

Var(x̂cv) = Var(x̂) + α2Var(ŷ) + 2αCov(x̂, ŷ).

The right hand side is minimal for

α = −Cov(x̂, ŷ)

Var(ŷ)
.

Then

Var(x̂cv) = Var(x̂)−
(
Cov(x̂, ŷ)

)2
Var(ŷ)

= Var(x̂)(1− ρ2),

where ρ is the correlation of x̂ and ŷ.
This computation shows that we have to look for Y with |ρ| possibly close to

1.
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Example. 3.10 (Underlying asset as a control variate) Suppose we are pricing
an option in the Black-Scholes model. If St is an asset price, then S̃t = exp(−rt)St
is a martingale. Assume we are pricing a European option with payoff Y = g(ST )
and maturity T . To estimate ST we perform N simulations Sj , j = 1, . . . , N , and
compute Y j = g(Sj). The control variate estimator is

1

N

N∑
j=1

(
Y j −

(
Sj − exp(rT )S0

))
.

Example. 3.11 (Hedge control variates) Because the payoff of a hedged portfo-
lio has a lower standard deviation than the payoff of an unhedged one, using
hedges can reduce the volatility of the portfolio. Let V (t) = g(St) denote an
option price at time t. A delta hedge consists of holding ∆ = ∂V/∂S shares of
the underlying asset, which is rebalanced at discrete time intervals. At time T, the
hedge consists of the savings account and the asset, which closely replicates the
payoff of the option. If Ṽ (t) is the discounted price then

Ṽ (T ) = Ṽ (t0) +

∫ T

t0

∂Ṽ

∂S̃
dS̃.

We write a discrete approximation to the above formula dividing [t0, T ] into n
subintervals with endpoints ti, i = 0, . . . , n, and replacing the integral by a dis-
crete sum. In addition, we discount all terms to time T . Then we can write

V (T ) = V (t0)e
r(T−t0) +

n−1∑
i=0

∂V (ti)

∂S

(
Sti+1 − Stie

r(ti+1−ti)
)
er(T−ti+1).

Let us note that

CV =

n−1∑
i=0

∂V (ti)

∂S

(
Sti+1 − Stie

r(ti+1−ti)
)
er(T−ti+1)

is an approximation of a martingale with expectation zero (a stochastic integral).
We will use this expression as a control variate. We simulate N trajectories Sj

ti
,

j = 1, . . . , N . On each trajectory we compute the option price V j(T ) = g
(
Sj
tn

)
and the control variate

CVj =
n−1∑
i=0

∂V j(ti)

∂S

(
Sj
ti+1

− Sj
ti
er(ti+1−ti)

)
er(T−ti+1).

Then we obtain the control variate estimator

V (t0)e
r(T−t0) =

1

N

N∑
j=1

(
V j(T )− CVj

)
.
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Example. 3.12 (Asian option in the Black-Scholes model) Asian options are op-
tions with payoff depending on the average price of the underlying asset on [0, T ]

Sar =
1

T

∫ T

0
Stdt.

Even in the most elementary Black-Scholes model, there is no analytic expression
for the price of a call or put option on that underlying. On the other hand, for the
corresponding geometric average Asian option

Sgm = exp

(
1

T

∫ T

0
lnStdt

)
there is an analytic formula similar to the Black-Scholes formula.

To derive that formula we use the expression St = S0 exp
(
(r−σ/2)t+σWt

)
.

Taking in that expression S0 = 1, computing lnSt and integrating, we obtain

1

T

∫ T

0
lnSt dt = (r − σ2/2)

T

2
+
σ

T

∫ T

0
Wtdt.

To evaluate the integral
∫ T
0 Wtdt we observe that this random variable is nor-

mally distributed. It is sufficient to compute the mean and variance for X :=
σ
T

∫ T
0 Wtdt. It is easy to see that E(X) = 0 due to E(Wt) = 0. To evaluate the

variance of X we compute only

E
(
X2
)
=
σ2

T 2
E
(∫ T

0
Wtdt

)2

.

Integrating by parts we obtain
∫ T
0 Wtdt =

∫ T
0 (T − t)dWt. Then

E
(∫ T

0
Wtdt

)2

= E
(∫ T

0
(T − t)dWt

)2

=

∫ T

0
(T − t)2dt =

1

3
T 3.

This gives the distribution of σ/T
∫ T
0 Wtdt ∼ N (0, σ2T/3) and also

1

T

∫ T

0
lnStdt ∼ N

((
r − σ2

2

)T
2
,
σ2

3
T
)
. (3.1)

Hence, we can price the option using the Black-Scholes formula.
Let us recall that in the Black-Scholes model for a stock paying a continuous

dividend with rate rd, we have

lnSt ∼ N
((
r − rd −

v2

2

)
t, v2t

)
, (3.2)
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where v is the stock volatility.
The call price in this model is given by the formula

Vt = e−rd(T−t)StΦ
(
d1(St, T − t)

)
−Ke−r(T−t)Φ

(
d2(St, T − t)

)
, (3.3)

where

d1(St, T − t) =
ln(St/K) + (r − rd +

v2

2 )(T − t)

v
√
T − t

d2(St, T − t) = d1(St, T − t)− v
√
T − t.

Comparing the distribution given by (3.1) with the distribution of lnST from (3.2)
we see that by making in the Black-Scholes formula (3.3) the substitutions

v =
σ√
3
, rd =

r

2
+
σ2

12
, r − rd −

1

2
v2 =

r

2
− σ2

4
,

we arrive at the price of the geometric average Asian call option

V0 = e
− 1

2

(
r+σ2

6

)
T
S0Φ(b1)− e−rTKΦ(b2),

where

b1 =
ln S0

K + 1
2

(
r + σ2

6

)
T

σ√
3

√
T

, b2 = b1 −
σ√
3

√
T .

The price for the arithmetic average Asian option is estimated by the following al-
gorithm: we discretize the time interval [0, T ] with points ti, i = 1, . . . , n, simulate
N price trajectories (Sj

ti
)1≤i≤n, j = 1 . . . , N , and on each trajectory compute

Aj = exp(−rT )

(
1

n

n∑
i=1

Sj
ti
−K

)+

,

Gj = exp(−rT )

(( n∏
i=1

Sj
ti

) 1
n

−K

)+

,

Xj = Aj − (Gj − V0).

The estimator of the price for the arithmetic average Asian option is

X̂ =
1

N

N∑
j=1

Xj .
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Remark. 3.4 The estimator of the last example is biased. This bias can be ex-
plained by the fact that in the MC simulation, we use discrete geometric averaging,
and the analytic price has been computed for the continuous geometric average.
Fortunately, we can derive (computations are a bit more complicated) an analytic
formula for the discrete geometric average call option. Discretizing the time inter-
val [0, T ] into n subintervals of equal length we obtain the following price of the
discrete geometric average Asian call option

VD = e−rT+n+1
2n

(r−σ2/2)T+
(n+1)(2n+1)

12n2 σ2TS0Φ(b̂1)− e−rTKΦ(b̂2),

where

b̂1 =
log S0

K + n+1
2n (r − σ2/2)T + (n+1)(2n+1)

6n2 σ2T

σ
√

T (n+1)(2n+1)
6n2

,

b̂2 = b̂1 − σ

√
T (n+ 1)(2n+ 1)

6n2
.

Using VD instead of V0 we remove the bias.

3.3 Greeks

In this section, we will describe selected methods for estimating sensitivities, i.e.,
derivatives with respect to parameters for expectations of certain random variables.
When these expectations are contingent claim prices, the sensitivities are called
Greeks.

Finite differences

Consider a contingent claim Y (θ) depending on a parameter θ. Our goal is to com-
pute the derivative with respect to θ of the expectation y(θ) = E(Y (θ)). We can
approximate this derivative by finite differences. To understand existing possibili-
ties let us take a function f(θ) of class C3. We can approximate its derivative in at
least two ways:

f ′(θ) ≈ h−1
(
f(θ + h)− f(θ)

)
, forward difference,

f ′(θ) ≈ (2h)−1
(
f(θ + h)− f(θ − h)

)
, central difference.

Each of these methods gives a different error∣∣∣f(θ + h)− f(θ)

h
− f ′(θ)

∣∣∣ = O(h),∣∣∣f(θ + h)− f(θ − h)

2h
− f ′(θ)

∣∣∣ = O(h2).
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Take N simulations Yj(θ), j = 1, . . . , N . Let ŷ(θ) = 1
N

∑N
j=1 Yj(θ) be the

estimator of y(θ). We can estimate y′(θ) using forward or central differences

ŷ′F (θ) =
1

N

N∑
j=1

h−1
(
Yj(θ + h)− Yj(θ)

)
,

ŷ′C(θ) =
1

N

N∑
j=1

(2h)−1
(
Yj(θ + h)− Yj(θ − h)

)
.

We also have a choice in simulating Y (θ): (i) we can simulate Y (θ + h) and
Y (θ) (Y (θ + h) and Y (θ − h), respectively) independently or (ii) simulate both
random variables Y (θ+h) and Y (θ) (Y (θ+h) and Y (θ−h), respectively) using
a common sequence of pseudo-random numbers. Hence, we have in fact four
estimators: ŷ′F,i, ŷ

′
F,ii, ŷ

′
C,i and ŷ′C,ii.

To decide which of these estimators apply in computation, let us analyze the
bias for the two methods of derivative approximation

Bias(ŷ′F ) = E(ŷ′F − y′(θ)) = O(h),

Bias(ŷ′C) = E(ŷ′C − y′(θ)) = O(h2).

The above formulas suggest that the smaller h the better the accuracy. This
conclusion is premature. The effect on bias must be mitigated by the effect on
variance. Let us compute the variances for the aforementioned methods of simula-
tion Y (θ+h) and Y (θ) (Y (θ+h) and Y (θ−h), respectively). When the sequence
Yj(θ + h) is generated independently from the sequence Yj(θ), then

Var

(
1

N

N∑
j=1

Yj(θ + h)− Yj(θ)

h

)

=
1

h2
1

N2

N∑
j=1

(
Var
(
Yj(θ + h)

)
+Var

(
Yj(θ)

))
≃ 1

h2

(
Var(Y (θ + h))

N
+

Var(Y (θ))

N

)
→ 2

h2N
Var(Y (θ)).

Hence, Var(ŷ′F,i) = O(N−1h−2).
Similar computations for Y (θ+h) and Y (θ) (Y (θ+h) and Y (θ−h), respec-

tively) simulated from common pseudo-random numbers, when Y (θ) fulfills the
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assumptions of Lemma 3.14 (see the next section), give

Var

(
1

N

N∑
j=1

Yj(θ + h)− Yj(θ)

h

)
≃ 1

N
Var
(Y (θ + h)− Y (θ)

h

)
→ 1

N
Var
(
Y ′(θ)

)
.

Hence Var(ŷ′F,ii) = O(N−1).
If the assumptions of Lemma 3.14 are not fulfilled, we can only expect that

Var
(
Y (θ + h) − Y (θ)

)
→ 0 for h → 0. There are no rigorous results about

the rate of convergence. The numerical experience says that the typical rate is
Var(ŷ′F,ii) = O(N−1h−1). The results for the estimators ŷ′C,i and ŷ′C,ii are similar.
Hence, the variance increases with h→ 0. The best choice of the step size h has to
be a compromise between a small h which decreases Bias(ŷ′) and a large h which
decreases the variance of the estimator.

Example. 3.13 Let us compute the value of Delta for an option with payoff g(ST )
in the Black-Scholes model. As

Sx
T = x exp

((
r − σ2/2

)
T + σWT

)
,

we have

∆ =
1

2hN

N∑
j=1

(
g
(
(x+ h) exp

((
r − σ2/2

)
T + σ

√
Tξj

))
−g
(
(x− h) exp

((
r − σ2/2

)
T + σ

√
Tξj

)))
,

where we have applied central differences and a common sequence of normal vari-
ables ξj to simulate Wiener process.

Pathwise differentiation

The idea is based on the equality

d

dθ
y(θ) =

d

dθ
E
(
Y (θ)

)
= E

(dY
dθ

)
. (3.4)

The conditions for the validity of (3.4) are given in the following lemma.
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LEMMA. 3.14 Assume that Y (θ) is differentiable a.s. at θ0 and satisfies a.s. the
Lipschitz condition ∣∣Y (θ1)− Y (θ2)

∣∣ ≤M |θ1 − θ2|,

for θ1, θ2 in a non-random neighborhood of θ0 and E(M) < +∞. Then (3.4) is
satisfied at θ = θ0.

Proof. Let y(θ) = E(Y (θ)). Then

y′(θ0) = lim
h→0

y(θ0 + h)− y(θ0)

h
= lim

h→0
E
(Y (θ0 + h)− Y (θ0)

h

)
. (3.5)

Since
(
Y (θ0+h)−Y (θ0)

)
/h ≤M this quotient converges to Y ′(θ0). By the theo-

rem of dominated convergence the right hand side of (3.5) converges to E(Y ′(θ0)).

Example. 3.15 As previously, we compute Delta of a call option in the Black-
Scholes model

E
(
g(Sx

T )
)
= exp(−rT )E

((
Sx
T −K

)+)
,

where
Sx
T = x exp

((
r − σ2/2

)
T + σ

√
Tξ
)
, ξ ∼ N (0, 1).

Then

∆ = E
(
dg

dx

)
= E

(
dg

dSx
T

dSx
T

dx

)
.

By simple computations we get:

dSx
T

dx
=
Sx
T

x
,

dg

dSx
T

= e−rT d

dSx
T

(
Sx
T −K

)+
= e−rT

{
0, for Sx

T < K,

1, for Sx
T > K.

To compute Delta, we ignore that the derivative in the last equality does not exist
for Sx

T = K since this is an event with probability 0.
Eventually, we obtain

∆ = E
(
dg

dx

)
= e−rTE

(
Sx
T

x
11Sx

T>K

)
.

But Gamma cannot be computed by this approach, even for the Black-Scholes
model, as the payoff function is not twice differentiable.
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The likelihood ratio method

The most generally applicable method for computation of Greeks is the likelihood
ratio method. Suppose we have to compute the derivative of E(Y (θ)) with respect
to θ. The key feature is that the dependence on θ is restricted to the measure
Pθ(dω), i.e.

y(θ) = E(Y (θ)) =

∫
Ω
Y (ω)Pθ(dω).

The conditions for the interchange of differentiation and integration are given in
the following lemma.

LEMMA. 3.16 Let
(
ϕθ(x)

)
θ∈Θ be a family of densities on R such that ϕθ(x) is

continuously differentiable with respect to θ a.e. x ∈ R. Then

d

dθ

∫
R
g(x)ϕθ(x)dx =

∫
R
g(x)

dϕθ
dθ

(x)dx

for θ in an open interval Θ0 ⊂ Θ, if and only if g ∈ Lq and
∣∣dϕθ
dθ (x)

∣∣ ≤ M(x)
x-a.s., for each θ ∈ Θ0, and M ∈ Lp, where 1/p+ 1/q = 1.

Proof. Assume that (θ − ϵ, θ + ϵ) ⊂ Θ0. For |h| < ϵ we have

1

h

(∫
R
g(x)ϕθ+h(x)dx−

∫
R
g(x)ϕθ(x)dx

)
=

∫
R
g(x)

ϕθ+h(x)− ϕθ(x)

h
dx =

∫
R
g(x)ϕ′θ∗(x)dx,

(3.6)

where θ∗ ∈ (θ − |h|, θ + |h|).
By the theorem assupmtions |ϕ′θ∗(x)| ≤M(x) and∣∣∣∣ ∫

R
g(x)ϕ′θ∗(x)dx

∣∣∣∣ ≤ ∫
R
|g(x)M(x)|dx ≤ ∥g∥Lq∥M∥Lp < +∞.

Hence the left hand side of (3.6) is bounded from above and we can pass to the
limit for h→ 0 by the dominated convergence theorem.

Example. 3.17 We illustrate the method by computing Delta and Gamma in the
Black-Scholes model, i.e., we compute the x-derivatives of E(g(Sx

T )).
Assume that we know the transition density from x to Sx

T : ϕ(Sx
T ) = ϕ(x, Sx

T ).
This function is the density of Sx

T . Then we have

E
(
g(Sx

T )
)
=

∫
R
g(Sx

T )ϕ(x, S
x
T )dS

x
T =

∫
R
g(S)ϕ(x, S)dS.
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We formally differentiate this integral to obtain Delta

∆ =
∂

∂x
E
(
g(Sx

T )
)
=

∫
R
g(S)

∂

∂x
ϕ(x, S)dS

=

∫
R
g(S)

∂ lnϕ

∂x
ϕ(x, S)dS = E

(
g(S)

∂ lnϕ

∂x

)
.

The second differentiation gives Gamma (ϕ is a smooth function in the Black-
Scholes model)

Γ =
∂2

∂x2
E
(
g(Sx

T )
)
=

∫
R
g(S)

(∂2 lnϕ
∂x2

ϕ(x, S) +
∂ lnϕ

∂x

∂ϕ

∂x

)
dS

=

∫
R
g(S)

(
∂2 lnϕ

∂x2
+
(∂ lnϕ

∂x

)2)
ϕ(x, S)dS

=E
(
g(S)

(
∂2 lnϕ

∂x2
+
(∂ lnϕ

∂x

)2))
.

Using the density of Sx
T in the Black-Scholes model

ϕ(x, S) =
1√

2πσ2TS
exp

(
−

(
lnS/x− (r − σ2/2)T

)2
2σ2T

)

we obtain

∂ lnϕ

∂x
=

lnS/x− (r − σ2/2)T

xσ2T
,

∂2 lnϕ

∂x2
= −1 + lnS/x− (r − σ2/2)T

x2σ2T
.

Remark. 3.5 The likelihood ratio method can be used for computation of other
Greeks provided we know ϕ(x, S), i.e., for many European options.





Chapter 4

Integration of stochastic
differential equations

The computation of E(X) from a known distribution of X is a rare event. A more
common situation is whereX is the value at time T of a stochastic processXt with
the dynamics given by a stochastic differential equation. MC simulations can be
used to solve that equation and obtain an approximate distribution of X . In what
follows, we restrict our presentation to the Itô stochastic equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t > 0, X0 = x,

where Wt is a standard Wiener process.
Solving that equation means solving the integral equation

Xt = X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, (4.1)

where
∫ t
0 σ(s,Xs)dWs denotes the Itô integral.

We assume that the coefficients b(t, x) and σ(t, x) fulfill the assumptions of
Theorem 1.2 and equation (4.1) has a unique strong solution.

The numerical integration of (4.1) means, in fact, a numerical approximation
of the corresponding integrals. The main difficulty is in the approximation of the
Itô integral.

4.1 Numerical schemes for stochastic differential equa-
tions

We begin our analysis with a discrete interpolation of the one-dimensional Wiener
process Wt. To interpolate Wt in the interval [0, T ] we divide this interval into N

67
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equal subintervals of length h = T/N with grid points

tn = nh = n
T

N
, n = 0, . . . , N.

The Wiener process Wt can be approximated in points tn by the expression

Wtn+1 =Wtn +∆Wn, Wt0 =W0 = 0,

where ∆Wn are i.i.d. variables with distribution N (0, h).

LEMMA. 4.1 Let W h
t take values Wtn at points tn and be linearly interpolated

between these points. Then

E
(∫ T

0

∣∣W h
t −Wt

∣∣dt) = CN−1/2.

Proof. Let ZT
t = Wt − t

TWT denote the Brownian bridge in the interval [0, T ].
Then the process ∫ T

0

∣∣W h
t −Wt

∣∣dt
has the same distribution as the sum of N copies of∫ T/N

0

∣∣ZT/N
t

∣∣dt.
Let us notice that {ZT

tT }0≤t≤1 has the same distribution as {
√
TZ1

t }0≤t≤1 by the
scaling property of Wiener process. Farther, Z1

t ∼ N (0, t(1 − t)) since EZ1
t = 0

and E
((
Z1
t

)2)
= E(W 2

t − 2tWtW1 + t2W 2
1 ) = t− t2.

Hence

E
(∫ T

0

∣∣W h
t −Wt

∣∣dt) = N E
(∫ T/N

0

∣∣ZT/N
t

∣∣dt) = T E
(∫ 1

0

∣∣ZT/N
sT/N

∣∣ds)
=
T 3/2

N1/2
E
(∫ 1

0

∣∣Z1
s

∣∣ds) =
T 3/2

N1/2

∫ 1

0

√
2s(1− s)

π
ds = CN−1/2.

The second equality above is obtained by substitution t 7→ s T
N ; the fourth, follows

from the formula E|ξ| =
√

2σ2

π for ξ ∼ N (0, σ2), and the distribution of Z1
t .

Numerical schemes used for the integration of SDEs can be easily obtained by
expanding coefficients of the equation by Taylor’s formula combined with the Itô
lemma and truncating the expansion at an appropriate level. That procedure, called
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the Itô-Taylor expansion, can be applied to stochastic differential equations of any
finite dimension.

Consider the multi-dimensional equation

Xt = Xt0 +

∫ t

t0

b(s,Xs)ds+

∫ t

t0

σ(s,Xs)dWs, (4.2)

where X and b are d-dimensional vectors, σ is a matrix with dimension d×m and
Wt is an m-dimensional Wiener process. Applying the Itô lemma to the coeffi-
cients b and σ we obtain

b(s,Xs) = b(t0, Xt0) +

∫ s

t0

∂b(v,Xv)

∂v
dv

+

∫ s

t0

d∑
i=1

∂b(v,Xv)

∂xi
bi(v,Xv)dv

+
1

2

∫ s

t0

d∑
i,j=1

∂2b(v,Xv)

∂xi∂xj

( m∑
k,l=1

σki (v,Xv)Qklσ
l
j(v,Xv)

)
dv

+

∫ s

t0

d∑
i=1

∂b(v,Xv)

∂xi

( m∑
j=1

σji (v,Xv)dW
j
v

)
,

and

σ(s,Xs) = σ(t0, Xt0) +

∫ s

t0

∂σ(v,Xv)

∂v
dv

+

∫ s

t0

d∑
i=1

∂σ(v,Xv)

∂xi
bi(v,Xv)dv

+
1

2

∫ s

t0

d∑
i,j=1

∂2σ(v,Xv)

∂xi∂xj

( m∑
k,l=1

σki (v,Xv)Qklσ
l
j(v,Xv)

)
dv

+

∫ s

t0

d∑
i=1

∂σ(v,Xv)

∂xi

( m∑
j=1

σji (v,Xv)dW
j
v

)
,

where Q denotes the covariance matrix of Wt.
Defining the operators

L0f =
∂f

∂t
+

d∑
i=1

∂f

∂xi
bi +

1

2

d∑
i,j=1

∂2f

∂xi∂xj

( m∑
k,l=1

σki Qklσ
l
j

)
,

Ljf =
d∑

i=1

∂f

∂xi
σji , j = 1, . . . ,m,
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we can write

b(s,Xs) = b(t0, Xt0) +

∫ s

t0

L0b(v,Xv)dv +

m∑
j=1

∫ s

t0

Ljb(v,Xv)dW
j
v ,

σ(s,Xs) = σ(t0, Xt0) +

∫ s

t0

L0σ(v,Xv)dv +

m∑
j=1

∫ s

t0

Ljσ(v,Xv)dW
j
v .

Inserting these expansions into (4.2) we get

Xt = Xt0 + b(t0, Xt0)(t− t0) + σ(t0, Xt0)(Wt −Wt0) + r(t), (4.3)

where the remainder is

r(t) =

∫ t

t0

∫ s

t0

L0b(v,Xv)dvds+
m∑
j=1

∫ t

t0

∫ s

t0

Ljb(v,Xv)dW
j
v ds

+

∫ t

t0

∫ s

t0

L0σ(v,Xv)dvdWs +

m∑
j=1

∫ t

t0

∫ s

t0

Ljσ(v,Xv)dW
j
v dWs

(4.4)

By discarding the remainder, we obtain the first-order approximation

Xt ≈ Xt0 + b(t0, Xt0)(t− t0) + σ(t0, Xt0)(Wt −Wt0)

which is the Euler-Maruyama scheme. In one dimension the algorithm of the Euler-
Maruyama scheme has the form:

X0 = x,

Xn+1 = Xn + b(tn, Xn)h+ σ(tn, Xn)∆Wn,

where ∆Wn =Wtn+1 −Wtn .
To obtain a better approximation we can expand terms Ljσ(t,Xt) using the Itô

lemma

Lj0σ(t,Xt) = Lj0σ(t0, Xt0) +

∫ t

t0

L0Lj0σ(v,Xv)dv

+

m∑
j=1

∫ t

t0

LjLj0σ(v,Xv)dW
j
v .

Substituting these expansions into r(t) we obtain the following expression for
Xt

Xt = Xt0 + b(t0, Xt0)(t− t0) + σ(t0, Xt0)(Wt −Wt0)

+

m∑
j=1

Ljσ(t0, Xt0)

∫ t

t0

∫ s

t0

dW j
v dWs + r1(t),

(4.5)
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where the new remainder is

r1(t) =

∫ t

t0

∫ s

t0

L0b(v,Xv)dvds+
m∑
j=1

∫ t

t0

∫ s

t0

Ljb(v,Xv)dW
j
v ds

+

∫ t

t0

∫ s

t0

L0σ(v,Xv)dvdWs

+
m∑
j=1

∫ t

t0

∫ s1

t0

∫ s2

t0

L0Ljσ(v,Xv)dvdW
j
s2dWs1

+

m∑
j1,j2=1

∫ t

t0

∫ s1

t0

∫ s2

t0

Lj1Lj2σ(v,Xv)dW
j2
v dW

j1
s2 dWs1 .

Discarding r1(t) we obtain the multi-dimensional Milstein scheme. To imple-
ment this scheme effectively, we have to compute the iterated Itô integrals∫ t

t0

∫ s

t0

dW j
v dWs

which is a highly non-trivial operation. Hence, we limit our considerations to a
one-dimensional case where the integral can be easily computed∫ t

t0

∫ s

t0

dWvdWs =

∫ t

t0

(
Ws −Wt0

)
dWs =

1

2

(
(Wt −Wt0)

2 − (t− t0)
)
.

Then we obtain the one-dimensional Milstein scheme:

X0 = x,

Xn+1 = Xn + b(tn, Xn)h+ σ(tn, Xn)∆Wn

+
1

2
∂σ
∂x (tn, Xn)σ(tn, Xn)

(
(∆Wn)

2 − h
)
.

Below we will concentrate on one-dimensional schemes. To investigate the con-
vergence of numerical schemes we have to compare the stochastic process Xt to
its numerical approximation. The problem is that numerical schemes generate only
a sequence of random variables Xn. Hence, we extend that sequence to a process
defined for all t either by the linear interpolation

X̃h
t = Xn +

t− tn
tn+1 − tn

(
Xn+1 −Xn

)
for t ∈ [tn, tn+1)

or the piecewise constant interpolation

X̃h
t = Xn for t ∈ [tn, tn+1),
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where the superscript h indicates the dependence on the time increment h.
Despite the difference in these approximations, one obtains the same limits for

N → ∞.

DEFINITION. 4.2 A numerical scheme is strongly convergent of order γ, if for
each h < h0

E
(∣∣XT − X̃h

T

∣∣) ≤ CT h
γ .

A numerical scheme is weakly convergent of order γ, if for each h < h0∣∣Ef(XT )− Ef(X̃h
T )
∣∣ ≤ Cf

T h
γ ,

for every f of class C2(1+γ), where f and its derivatives up to order 2(1+ γ) have
polynomial growth. The constants CT , Cf

T depend on the SDE and the parameters
indicated as indices (T or T and f ).

Remark. 4.1 The relevant order of convergence is 1/2, 1, 3/2, 2, 5/2, . . . , i.e., an
integer multiplicity of 1/2. Then 2(1 + γ) is an integer and C2(1+γ) is a usual
space of functions continuous together with their derivatives.

4.2 Proofs of convergence

We will analyze the convergence rate of the Euler-Maruyama and Milstein schemes
in the one-dimensional case. We begin with the strong convergence of the Euler-
Maruyama scheme.

THEOREM. 4.3 Consider the stochastic differential equation (4.1) with the co-
efficients that fulfill the following conditions:

(A1) |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|;

(A2) |b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|);

(A3) |b(t, x)− b(s, x)|+ |σ(t, x)− σ(s, x)| ≤ K(1 + |x|)
√
t− s;

for x, y ∈ R and t, s ∈ [0, T ], t > s.
The Euler-Maruyama scheme for equation (4.1) reads

Xh
n+1 = Xh

n + b(tn, X
h
n)h+ σ(tn, X

h
n)∆Wn,

where

h =
T

N
, tn = nh, n = 0, . . . , N ; ∆Wn =Wtn+1 −Wtn , n = 0, . . . , N − 1,
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and the superscript h in Xh
n indicates the dependence on the time step h.

The obtained sequence of random variables is extended to a process on [0, T ]
by linear approximation which for t ∈ [tn, tn+1) is given by the expression

X̃h
t = Xh

n+

∫ t

tn

b(tn, X
h
n)ds+

∫ t

tn

σ(tn, X
h
n)dWs, n = 0, . . . , N−1, X̃h

T = Xh
N .

Then
E
(

sup
t∈[0,T ]

∣∣Xt − X̃h
t

∣∣) = O(h1/2).

The solution X̃h
t of the above theorem is defined piecewise for t ∈ [tn, tn+1).

To define X̃h
t by one equation for all t ∈ [0, T ], we introduce for t ∈ [0, T ] the

function
Ψt = max{tn, n = 0, . . . , N : tn ≤ t}.

Then X̃h
Ψt

= Xh
n for t ∈ [tn, tn+1) and X̃h

t is given by the equation

X̃h
t = x+

∫ t

0
b(Ψs, X̃

h
Ψs

)ds+

∫ t

0
σ(Ψs, X̃

h
Ψs

)dWs. (4.6)

The proof of Theorem 4.3 requires a uniform bound of the solution X̃h
t that

can be obtained with the help of the Burkholder-Davis-Gundy inequality [29].

LEMMA. 4.4 (Burkholder-Davis-Gundy inequality) Let
(
Mt

)
t∈[u,v] be a con-

tinuous square integrable martingale. For each m > 0 there exist constants
0 < km < Km <∞ such that

kmE
((

⟨M⟩v
)m) ≤ E

(
sup

t∈[u,v]
|Mt|2m

)
≤ KmE

((
⟨M⟩v

)m)
,

where ⟨M⟩v denotes the quadratic variation of M .

Then we can prove the following estimate.

LEMMA. 4.5 Let X̃h
t be the Euler-Maruyama approximation defined in Theorem

4.3. Then under assumptions (A1) and (A2) of this theorem for each p ≥ 1, we get
the estimate

sup
h<1

E
(

sup
t∈[0,T ]

|X̃h
t |p
)1/p

< +∞.
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Proof. Since h = T
N is now fixed, we omit the superscript h in the proof. Then the

equation for X̃t := X̃h
t reads

X̃t = x+

∫ t

0
b(Ψs, X̃Ψs)ds+

∫ t

0
σ(Ψs, X̃Ψs)dWs,

From the above equation we have the estimate

sup
s≤t

|X̃s|p ≤ 3p−1

(
|x|p + sup

s≤t

∣∣∣∣ ∫ s

0
b(Ψv, X̃Ψv)dv

∣∣∣∣p
+ sup

s≤t

∣∣∣∣ ∫ s

0
σ(Ψv, X̃Ψv)dWv

∣∣∣∣p), (4.7)

which follows from Jensen’s inequality for the convex function |x|p

|a1 + · · ·+ an|p ≤ np−1
(
|a1|p + · · ·+ |an|p

)
.

We estimate separately each term in (4.7). By Jensen’s inequality we get∣∣∣∣ ∫ s

0
b(Ψv, X̃Ψv)dv

∣∣∣∣p = sp
∣∣∣∣1s
∫ s

0
b(Ψv, X̃Ψv)dv

∣∣∣∣p ≤ sp−1

∫ s

0

∣∣b(Ψv, X̃Ψv)
∣∣pdv

≤ sp−1Kp

∫ s

0

(
1 + |X̃Ψv |

)p
dv ≤ C

(
1 +

∫ s

0
|X̃Ψv |pdv

)
.

For fixed h and n = 0, . . . , N , we have |X̃tn | < +∞. Hence, by assumption
(A2) of Theorem 4.3, the stochastic integral(∫ t

0
σ(Ψv, X̃Ψv)dWv

)
t≤T

is a square integrable martingale. By the Burkholder-Davis-Gundy inequality, as-
sumption (A2) of Theorem 4.3, and Hölder’s inequality, we get

E
(
sup
s≤t

∣∣∣∣ ∫ s

0
σ(Ψv, X̃Ψv)dWv

∣∣∣∣p) ≤ K E
((∫ t

0

∣∣σ(Ψv, X̃Ψv)
∣∣2dv)p/2)

≤ K E
(
tp/2−1

∫ t

0

(∣∣σ(Ψv, X̃Ψv)
∣∣2)p/2dv) ≤ C

(
1 +

∫ t

0
E
∣∣X̃Ψv

∣∣pdv).
Collecting the estimates we obtain

E
(
sup
s≤t

∣∣X̃s

∣∣p) ≤ C

(
1 +

∫ t

0
E
∣∣X̃Ψv

∣∣pdv) ≤ C

(
1 +

∫ t

0
E
(
sup
r≤v

∣∣X̃r

∣∣p)dv).
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By Gronwall’s inequality, we obtain the desired estimate

E
(
sup
s≤t

|X̃s|p
)
< +∞.

The following technical lemma will be useful in the proof of Theorem 4.3.

LEMMA. 4.6 Let X̃h
t be the Euler-Maruyama approximation defined in Theorem

4.3. Then under assumptions (A1) and (A2) of this theorem for each p ≥ 1, we
have the estimate

sup
h<1

E
(

sup
t∈[0,T ]

|X̃h
t − X̃h

Ψt
|p
)
≤ Chp/2.

Proof. As in the previous proof, we omit the index h. It is sufficient to prove the
estimate in a single interval [tn, tn+1). Since X̃t = X̃Ψt at each point tn then for
t ∈ [tn, tn+1) we get by Jensen’s inequality

∣∣X̃t − X̃Ψt

∣∣p ≤ C

(∣∣∣ ∫ t

tn

b(tn, Xn)dv
∣∣∣p + ∣∣∣ ∫ t

tn

σ(tn, Xn)dWv

∣∣∣p).
By assumption (A2) and Lemma 4.5 we have

E
(∣∣∣ ∫ t

tn

b(tn, Xn)dv
∣∣∣p) ≤ Chp E

(
1 + |Xn|p

)
≤ Chp.

Since the stochastic integral ∫ t

tn

σ(tn, Xn)dWv

is a square integrable martingale then, similarly like in the proof of Lemma 4.5, we
obtain

E
(∣∣∣ ∫ t

tn

σ(tn, Xn)dWv

∣∣∣p) ≤ CE
((∫ tn+1

tn

|σ(tn, Xn)|2dv
)p/2)

≤ Chp/2E
(
1 + |Xn|p

)
≤ Chp/2.

Collecting the above estimates we get

E
(

sup
t∈[tn,tn+1)

|X̃t − X̃Ψt |p
)
≤ Chp + Chp/2 ≤ Chp/2,

from where the result follows.
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Proof of Theorem 4.3. Using function Ψt, we can write

X̃t = x+

∫ t

0
b(Ψs, X̃Ψs)ds+

∫ t

0
σ(Ψs, X̃Ψs)dWs,

where, as previously, we omit the superscript h in X̃h
t . Then for t ∈ [tn, tn+1) we

get
Xt − X̃t = R1(t) +R2(t),

where

R1(t) =

∫ t

0
b(s,Xs)ds−

∫ t

0
b(Ψs, X̃Ψs)ds,

R2(t) =

∫ t

0
σ(s,Xs)dWs −

∫ t

0
σ(Ψs, X̃Ψs)dWs.

Let
z(t) = E

(
Xt − X̃t

)2
, r1(t) = E

(
R1(t)

)2
, r2(t) = E

(
R2(t)

)2
.

Then
z(t) = E

(
R1(t) +R2(t)

)2 ≤ 2r1(t) + 2r2(t).

We now estimate separately r1(t) and r2(t).

R1(t) =

∫ t

0

(
b(s,Xs)ds− b(s, X̃Ψs)

)
ds+

∫ t

0

(
b(s, X̃Ψs)− b(Ψs, X̃Ψs)

)
ds.

For the first integral we get the estimate

E

((∫ t

0

(
b(s,Xs)− b(s, X̃Ψs)

)
ds

)2
)

≤ E

((∫ t

0
K
∣∣Xs − X̃Ψs

∣∣ds)2
)

≤ 2K2T E
(∫ t

0

((
Xs − X̃s

)2
+
(
X̃s − X̃Ψs

)2)
ds

)
≤ 2K2T

∫ t

0
z(s)ds+ 2K2T E

(∫ t

0

(
X̃s − X̃Ψs

)2
ds
)

≤ C

∫ t

0
z(s)ds+ Ch

as z(s) = E
(
Xs − X̃s

)2 and
(
X̃s − X̃Ψs

)2 is estimated from Lemma 4.6.
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For the second integral we obtain

E

((∫ t

0

(
b(s, X̃Ψs)− b(Ψs, X̃Ψs)

)
ds

)2
)

≤ T E
(∫ t

0

(
b(s, X̃Ψs)− b(Ψs, X̃Ψs)

)2
ds

)
≤ 2T E

(∫ t

0
K2
(
1 + |X̃Ψs |2

)
(s−Ψs)ds

)
≤ 2TK2(1 +M)

∑
k<n

(∫ tk+1

tk

(s− tk)ds

)
≤ 2TK2(1 +M) · 1

2
h2n ≤ T 2K2(1 +M)h,

where M = E
(
sups≤T |X̃s|2

)
< +∞ by Lemma 4.5.

Collecting these estimates and assuming h ≤ 1 we obtain

r1(t) = E
(
R1(s)

)2 ≤ C1h+ C2

∫ t

0
z(s)ds

We perform similar computations for r2(t).

R2(t)=

∫ t

0

(
σ(s,Xs)− σ(s, X̃Ψs)

)
dWs +

∫ t

0

(
σ(s, X̃Ψs)− σ(Ψs, X̃Ψs)

)
dWs.

For the first integral we get the estimate

E

((∫ t

0

(
σ(s,Xs)− σ(s, X̃Ψs)

)
dWs

)2
)

= E
(∫ t

0

(
σ(s,Xs)− σ(s, X̃Ψs)

)2
ds

)
≤ 2K2 E

(∫ t

0

(
Xs − X̃s

)2
ds

)
+ 2K2 E

(∫ t

0

(
X̃s − X̃Ψs

)2
ds
)

≤ C

∫ t

0
z(s)ds+ Ch.
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The estimate for the second integral is as follows

E

((∫ t

0

(
σ(s, X̃Ψs)− σ(Ψs, X̃Ψs)

)
dWs

)2
)

= E
(∫ t

0

(
σ(s, X̃Ψs)− σ(Ψs, X̃Ψs)

)2
ds

)
≤ 2E

(∫ t

0
K2
(
1 + |X̃Ψs |2

)
(s−Ψs)ds

)
≤ 2K2(1 +M) · 1

2
h2n = (nh)K2(1 +M)h ≤ TK2(1 +M)h.

Collecting the estimates we write

r2(t) = E
(
R2(t)

)2 ≤ C1h+ C2

∫ t

0
z(s)ds.

The estimates of r1 and r2 give together

z(t) ≤ C1h+ C2

∫ t

0
z(s)ds.

By Gronwall’s inequality, we get

z(t) ≤ C1h exp(C2t).

Hence by the Doob maximal inequality we complete the proof

E
(

sup
t∈[0,T ]

|Xt − X̃t|
)
≤
(
E
(

sup
t∈[0,T ]

|Xt − X̃t|
)2)1/2

≤ 2

(
E
(
|XT − X̃T |2

))1/2

≤ C
(
z(T )

)1/2 ≤ C h1/2.

For the one-dimensional Milstein scheme, we have a better rate of convergence.
To make the proof simpler, we impose assumptions stronger than required.

THEOREM. 4.7 Let the coefficients of equation (4.1) be of classC1,2([0, T ]×R).
In addition, these coefficients fulfill the conditions:

(B1) |b(t, x)| ≤ K(1 + |x|) and |b(t, x)− b(s, x)| ≤ K(1 + |x|)
√
t− s;

(B2) |σ(t, x)| ≤ K and |σ(t, x)− σ(s, x)| ≤ K
√
t− s;
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(B3)
∣∣ ∂b
∂x(t, x)

∣∣+ ∣∣∂σ∂x (t, x)∣∣+ ∣∣ ∂2b
∂x2 (t, x)

∣∣+ ∣∣∂2σ
∂x2 (t, x)

∣∣ ≤ K;

(B4)
∣∣∂b
∂t (t, x)

∣∣+ ∣∣∂σ∂t (t, x)∣∣ ≤ K(1 + |x|).

In the notation of Theorem 4.3 the Milstein scheme for equation (4.1) reads

Xh
n+1 = Xh

n + b(tn, X
h
n)h+ σ(tn, X

h
n)∆Wn

+
1

2
∂σ
∂x (tn, X

h
n)σ(tn, X

h
n)
(
(∆Wn)

2 − h
)
.

The above sequence of random variables is extended to a process on [0, T ] by
linear approximation that for t ∈ [tn, tn+1) is given by the expression

X̃h
t = Xh

n +

∫ t

tn

b(tn, X
h
n)ds+

∫ t

tn

σ(tn, X
h
n)dWs

+

∫ t

tn

∫ s

tn

∂σ
∂x (tn, X

h
n)σ(tn, X

h
n)dWvdWs,

for n = 0, . . . , N − 1 with X̃h
T = Xh

N .
Under the above assumptions, we have the estimate

E
(

sup
t∈[0,T ]

∣∣Xt − X̃h
t

∣∣) = O(h).

Proof. To simplify the proof, we will investigate the case of time-independent co-
efficients. Then the derivatives ∂f

∂x and ∂2f
∂x2 will be denoted by f ′ and f ′′.

We rewrite equation (4.2) in a form more convenient for the proof. For t ∈
[tn, tn+1) we apply the Itô-Taylor expansion (4.3) with t0 = tn. Iterating this
expansion over all subintervals [tk, tk+1) for k < n we obtain

Xt = x+

∫ t

0
b(XΨs)ds+

∫ t

0
σ(XΨs)dWs

+

∫ t

0

∫ s

Ψs

σ′(XΨs)σ(XΨs)dWvdWs +R(t),

where the function Ψt = max{tn : tn ≤ t} is used to simplify the notation. The
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remainder R(t) is

R(t) =

∫ t

0

∫ s

Ψs

(
b′(Xv)b(Xv) +

1

2
b′′(Xv)σ

2(Xv)
)
dvds

+

∫ t

0

∫ s

Ψs

b′(Xv)σ(Xv)dWvds

+

∫ t

0

∫ s

Ψs

(
b(Xv)σ

′(Xv) +
1

2
σ′′(Xv)σ

2(Xv)
)
dvdWs

+

∫ t

0

∫ s

Ψs

(
σ(Xv)σ

′(Xv)− σ(XΨs)σ
′(XΨs)

)
dWvdWs.

For the Milstein approximation we have

X̃t = x+

∫ t

0
b(X̃Ψs)ds+

∫ t

0
σ(X̃Ψs)dWs

+

∫ t

0

∫ s

Ψs

σ′(X̃Ψs)σ(X̃Ψs)dWvdWs.

Then for t ∈ [tn, tn+1) we get

Xt − X̃t = A1(t) +A2(t) +A3(t) +R(t),

where

A1(t) =

∫ t

0

(
b(XΨs)− b(X̃Ψs)

)
ds,

A2(t) =

∫ t

0

(
σ(XΨs)− σ(X̃Ψs)

)
dWs,

A3(t) =

∫ t

0

∫ s

Ψs

(
σ′(XΨs)σ(XΨs)− σ′(X̃Ψs)σ(X̃Ψs)

)
dWvdWs.

Let

z(t) = sup
s≤t

E(Xs − X̃s)
2, ai(t) = sup

s≤t
E(Ai(s))

2, i = 1, 2, 3,

r(t) = sup
s≤t

E(R(s))2.

Then

z(t) = sup
s≤t

E
(
A1(s)+A2(s)+A3(s)+R(s)

)2 ≤ 4
(
a1(t)+a2(t)+a3(t)+r(t)

)
.
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We now estimate separately every term.

Since b(x) and σ(x) have bounded first derivatives, both functions are glob-
ally Lipschitz continuous. By this Lipschitz continuity and the Cauchy-Schwarz
inequality we get for A1

E
(
A2

1(t)
)
= E

((∫ t

0

(
b(XΨs)− b(X̃Ψs)

)
ds

)2
)

≤ K2T

∫ t

0
E
((
XΨs − X̃Ψs

)2)
ds ≤ C

∫ t

0
z(s)ds.

For A2 we use the Itô isometry of stochastic integrals

E
(
A2

2(t)
)
= E

((∫ t

0

(
σ(XΨs)− σ(X̃Ψs)

)
dWs

)2
)

=

∫ t

0
E
((
σ(XΨs)− σ(X̃Ψs)

)2)
ds

≤ K2

∫ t

0
E
((
XΨs − X̃Ψs

)2)
ds ≤ C

∫ t

0
z(s)ds.

To estimate A3 we use the boundedness of σ(x) and the Lipschitz continuity of
σ′(x) which follows by the boundedness of σ′′(x). Applying the Itô isometry two
times we obtain

E
(
A2

3(t)
)
= E

((∫ t

0

∫ s

Ψs

(
σ′(XΨs)σ(XΨs)− σ′(X̃Ψs)σ(X̃Ψs)

)
dWvdWs

)2
)

=

∫ t

0
E

((∫ s

Ψs

(
σ′(XΨs)σ(XΨs)− σ′(X̃Ψs)σ(X̃Ψs)

)
dWv

)2
)
ds

=

∫ t

0

∫ s

Ψs

E
((
σ′(XΨs)σ(XΨs)− σ′(X̃Ψs)σ(X̃Ψs)

)2)
dvds

≤ Ch

∫ t

0
E
((
XΨs − X̃Ψs

)2)
ds ≤ C

∫ t

0
z(s)ds.

We split the remainder R(t) into its four components R1 to R4 and estimate
each component separately.
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By assumptions (B2), (B3), and Theorem 1.2 we get

E
(
R2

1(t)
)
= E

((∫ t

0

∫ s

Ψs

(
b′(Xv)b(Xv) +

1

2
b′′(Xv)σ

2(Xv)
)
dvds

)2
)

≤ T E

(∫ t

0

(∫ s

Ψs

(
b′(Xv)b(Xv) +

1

2
b′′(Xv)σ

2(Xv)
)
dv

)2

ds

)

≤ Ch

∫ t

0

∫ s

Ψs

E
(
1 + |Xv|2

)
dvds ≤ Ch2

(
1 + |x|2

)
.

In the estimate of R3 we apply additionally the Itô isometry

E
(
R2

3(t)
)
= E

((∫ t

0

∫ s

Ψs

(
b(Xv)σ

′(Xv) +
1

2
σ′′(Xv)σ

2(Xv)
)
dvdWs

)2
)

=

∫ t

0
E

((∫ s

Ψs

(
b′(Xv)b(Xv) +

1

2
b′′(Xv)σ

2(Xv)
)
dv

)2
)
ds

≤ Ch

∫ t

0

∫ s

Ψs

E
(
1 + |Xv|2

)
dvds ≤ Ch2

(
1 + |x|2

)
.

The estimation ofR2 is more complicated. First, we split the domain of integration
[0, t] into the subintervals defined by the grid point of the Milstein approximation

E
(
R2

2(t)
)
= E

((∫ t

0

∫ s

Ψs

b′(Xv)σ(Xv)dWvds

)2
)

≤ 2 E

((nt−1∑
k=0

∫ tk+1

tk

∫ s

tk

b′(Xv)σ(Xv)dWvds

)2
)

+ 2 E

((∫ t

tnt

∫ s

tnt

b′(Xv)σ(Xv)dWvds

)2
)
,

where nt = max{n: tn ≤ t}.
By Fubini’s theorem we get

E
(
R2

2(t)
)
≤ 2 E

((nt−1∑
k=0

∫ tk+1

tk

∫ tk+1

v
b′(Xv)σ(Xv)dsdWv

)2
)

+ 2 E

((∫ t

tnt

∫ t

v
b′(Xv)σ(Xv)dsdWv

)2
)
.
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To estimate the first term, let us observe that since the intervals [tk, tk+1) and
[tj , tj+1) are disjoint for k ̸= j then

E
(∫ tk+1

tk

(. . . )dWv

∫ tj+1

tj

(. . . )dWv

)
= 0.

Using that identity in computing the square of the sum in the right hand side and
applying the Itô isometry we obtain the estimate

E
(
R2

2(t)
)
≤ 2

∫ tnt

0
E

((∫ tk+1

v
b′(Xv)σ(Xv)ds

)2
)
dv

+ 2

∫ t

tnt

E

((∫ t

v
b′(Xv)σ(Xv)ds

)2
)
dv

≤ C

∫ t

0
E

((∫ Ψv+h

v
b′(Xv)σ(Xv)ds

)2
)
dv

≤ Ch

∫ t

0

∫ Ψv+h

v
dsdv ≤ Ch2.

To estimate R4 we use the Itô isometry twice, assumptions (B2), (B3) and the
estimates of Theorem 1.2 to obtain

E
(
R2

4(t)
)
= E

((∫ t

0

∫ s

Ψs

(
σ(Xv)σ

′(Xv)− σ(XΨs)σ
′(XΨs)

)
dWvdWs

)2
)

=

∫ t

0
E

((∫ s

Ψs

(
σ(Xv)σ

′(Xv)− σ(XΨs)σ
′(XΨs)

)
dWv

)2
)
ds

=

∫ t

0

∫ s

Ψs

E
((
σ(Xv)σ

′(Xv)− σ(XΨs)σ
′(XΨs)

)2)
dvds

≤ C

∫ t

0

∫ s

Ψs

E
(
(Xv −XΨs)

2
)
dvds

≤ C
(
1 + |x|2

) ∫ t

0

∫ s

Ψs

|v −Ψs|dvds ≤ Ch2
(
1 + |x|2

)
.

Collecting the estimates we obtain

z(t) ≤ C1h
2 + C2

∫ t

0
z(s)ds.

By Gronwall’s inequality, we have

z(t) ≤ C1h
2 exp(C2t).
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In a similar way like in the proof of Theorem 4.3 we apply the Doob maximal
inequality to conclude the proof

E
(

sup
t∈[0,T ]

|Xt − X̃t|
)
≤
(
E
(

sup
t∈[0,T ]

|Xt − X̃t|
)2)1/2

≤ 2

(
E
(
|XT − X̃T |2

))1/2

≤ C
(
z(T )

)1/2 ≤ C h.

Remark. 4.2 The limitation of the presentation to one-dimensional equations is
not accidental. For the Euler-Maruyama scheme, the proof of convergence in many
dimensions remains similar to the proof of Theorem 4.3. The case of the Milstein
scheme is different. As we have mentioned deriving this scheme, in many dimen-
sions we have to evaluate the iterated stochastic integrals∫ tk+1

tk

∫ s

tk

dW j
v dW

i
s , i, j = 1, . . . ,m.

The simulations of these integrals, even in a simplified case of so-called commuta-
tive noise, have a very high computational complexity making the gain of a better
convergence rate problematic.

We will now investigate the order of weak convergence for the presented nu-
merical schemes. To simplify the presentation we will consider only the equation
with time independent coefficients

dXs = b(Xs)ds+ σ(Xs)dWs, s > t, Xt = x. (4.8)

We write Xt,x
s to indicate the dependence of solution on initial conditions. By

Theorem 1.13, and Remark 1.4, we know that if b, σ ∈ C4(Rd) with bounded
derivatives and g ∈ C4(Rd) with polynomial growth together with its derivatives,
then

u(t, x) = E
(
g(Xt,x

T )
)

is a solution of the Cauchy problem

∂u

∂t
+

d∑
i=1

bi(x)
∂u

∂xi
+

d∑
i,j=1

aij(x)
∂2u

∂xi∂xj
= 0, t ∈ [0, T ), x ∈ Rd,

u(T, x) = g(x),

(4.9)

where aij = 1
2

∑m
k=1 σ

k
i σ

k
j , and u is a C1 function with respect to t and C4 func-

tion with respect to x which together with its x-derivatives grows polynomially in
x uniformly in t.
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COROLLARY. 4.8 When Xt is a strong solution of (4.8) and u is a solution of
class C1,2([0, T ]× Rd) of (4.9), then Yt = u(t,Xt) is a local martingale.

Proof. By Itô’s formula we have

dYt =
∂u

∂t
dt+

d∑
i=1

∂u

∂xi

(
bidt+

m∑
k=1

σki dW
k
t

)
+

d∑
i,j=1

aij
∂2u

∂xi∂xj
dt

=
(∂u
∂t

+
d∑

i=1

bi
∂u

∂xi
+

d∑
i,j=1

aij
∂2u

∂xi∂xj

)
dt+

d∑
i=1

m∑
k=1

∂u

∂xi
σki dW

k
t

=
d∑

i=1

m∑
k=1

∂u

∂xi
σki dW

k
t ,

which shows that Yt is the Itô integral.

For the Euler-Maruyama scheme, we have the following result.

THEOREM. 4.9 Let assumptions (A1), (A2) of Theorem 4.3 be fulfilled and b, σ ∈
C4(Rd) with polynomial growth together with their derivatives up to order 4. If
Xt is a solution of (4.8) with X0 = x then for each g ∈ C4(Rd), which has poly-
nomial growth together with its derivatives, and T > 0, there exists a constant Cg

such that ∣∣∣E(g(XT )
)
− E

(
g(X̃h

T )
)∣∣∣ ≤ Cg h.

Proof. We will present a partial proof omitting some tedious computations. We
assume d = 1 to simplify presentation and omit the superscript h in X̃h.

By Corollary 4.8 we have

E
(
g(XT )

)
= E

(
u(T,XT )

)
= u(0, x).

Then

E
(
g(X̃T )− g(XT )

)
= E

(
u(T, X̃T )

)
− u(0, x)

=
N∑

n=1

E
(
u(tn, X̃tn)− u(tn−1, X̃tn−1)

)
.

To prove the theorem, it is enough to estimate the local error∣∣∣E(u(tn, X̃tn)− u(tn−1, X̃tn−1)
)∣∣∣ ≤ Ch2
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since then

∣∣∣E(g(X̃T )− g(XT )
)∣∣∣ ≤ N∑

n=1

∣∣∣E(u(tn, X̃tn)− u(tn−1, X̃tn−1)
)∣∣∣

≤
N∑

n=1

Ch2 = CTh.

By Corollary 4.8 we obtain (Xt0,x0
t denotes the strong solution of (4.8) with

initial data Xt0 = x0)

E
(
u(tn, X

tn−1,X̃tn−1

tn )|Ftn−1

)
= u(tn−1, X̃tn−1).

Inserting this equality into the expression for the local error we get

E
(
u(tn, X̃tn)− u(tn−1, X̃tn−1)

)
= E

(
E
(
u(tn, X̃tn)− u(tn−1, X̃tn−1)|Ftn−1

))
= E

(
E
(
u(tn, X̃tn)− u(tn−1, X̃tn−1)− u(tn, X

tn−1,X̃tn−1

tn )

+u(tn−1, X̃tn−1)|Ftn−1

))
= E

(
E
(
u(tn, X̃tn)− u(tn, X

tn−1,X̃tn−1

tn )|Ftn−1

))
.

We rewrite the conditional expectation in the above expression as the difference of
two terms

E
(
u(tn,X̃tn)− u(tn, X

tn−1,X̃tn−1

tn )|Ftn−1

)
=E
(
u(tn, X̃tn)− u(tn, X̃tn−1)|Ftn−1

)
− E

(
u(tn, X

tn−1,X̃tn−1

tn )− u(tn, X̃tn−1)|Ftn−1

)
and estimate each of these terms expanding u(t, x+∆x)−u(t, x) in Taylor’s series
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with respect to ∆x. Then we obtain∣∣∣∣E(E(u(tn,X̃tn)− u(tn, X
tn−1,X̃tn−1

tn )|Ftn−1

))∣∣∣∣
≤ E

( 3∑
k=1

1

k!

∣∣∣∂ku(tn, X̃tn−1)

∂xk

∣∣∣
×
∣∣∣E((X̃tn − X̃tn−1

)k − (Xtn−1,X̃tn−1

tn − X̃tn−1

)k∣∣Ftn−1

)∣∣∣
+ E

(
|R(X̃tn)|

∣∣Ftn−1

)
+ E

(
|R(Xtn−1,X̃tn−1

tn )|
∣∣Ftn−1

))
,

where

R(Z) =
1

4!

∂4u(tn, X̃tn−1 + θ(Z)(Z − X̃tn−1))

∂x4
(Z − X̃tn−1)

4.

Since u(t, x) is a C4 function with respect to x growing polynomially together
with all its derivatives, then we can find an even number 2q and a number C > 0
such that for k = 1, 2, 3∣∣∣∂ku(tn, X̃tn−1)

∂xk

∣∣∣ ≤ C
(
1 + |X̃tn−1 |2q

)
.

After some modifications this estimate remains valid in point X̃tn−1 + θ(Z)(Z −
X̃tn−1) for the fourth derivative ∂4u

∂x4 appearing in the remainder R(Z).
The expression

E
((
X̃tn − X̃tn−1

)k − (Xtn−1,X̃tn−1

tn − X̃tn−1

)k∣∣Ftn−1

)
(4.10)

is estimated separately for each k = 1, 2, 3.
For k = 1 we have∣∣∣E((X̃tn − X̃tn−1

)
−
(
X

tn−1,X̃tn−1

tn − X̃tn−1

)∣∣Ftn−1

)∣∣∣
=
∣∣∣E(Xtn−1,X̃tn−1

tn − X̃tn

∣∣Ftn−1

)∣∣∣ ≤ E
(
|r(tn)|

∣∣Ftn−1

)
≤ E

(∣∣∣ ∫ tn

tn−1

∫ s

tn−1

L0b(Xv)dvds
∣∣∣∣∣∣∣Ftn−1

)
,

where r(t) given by (4.4) is the remainder in the Itô-Taylor expansion for the Euler-
Maruyama approximation and operator L0 is defined in Section 4.1.
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Since L0b has a polynomial growth there are numbers 2q and C > 0 such that

E
(∣∣∣ ∫ tn

tn−1

∫ s

tn−1

L0b(Xv)dvds
∣∣∣∣∣∣∣Ftn−1

)
≤ C

(
1 + |X̃tn−1 |2q

)
h2.

Similarly, we can prove

E
(
|r(tn)|2

∣∣Ftn−1

)
≤ C

(
1 + |X̃tn−1 |2q

)
h2.

The above inequality is sufficient to estimate (4.10) for k = 3. Applying the Hölder
inequality to x3−y3 = (x−y)(x2+xy+y2), using the estimate for |r(tn)|2, and

the observation that in
(
X̃tn − X̃tn−1

)
and

(
X

tn−1,X̃tn−1

tn − X̃tn−1

)
all terms have

the order of smallness at least 1/2 with respect to h, we obtain for k = 3∣∣∣E((X̃tn − X̃tn−1

)3 − (Xtn−1,X̃tn−1

tn − X̃tn−1

)3∣∣Ftn−1

)∣∣∣ ≤ C
(
1+ |X̃tn−1 |2q

)
h2.

To estimate (4.10) for k = 2 we write

E
((
X̃tn − X̃tn−1

)2 − (Xtn−1,X̃tn−1

tn − X̃tn−1

)2∣∣Ftn−1

)
= E

(
r(tn)

(
X̃tn − X̃tn−1 +X

tn−1,X̃tn−1

tn − X̃tn−1

)∣∣Ftn−1

)
.

Since(
X̃tn − X̃tn−1 +X

tn−1,X̃tn−1

tn −X̃tn−1

)
=

∫ tn

tn−1

(
b(X̃tn−1) + b(X

tn−1,X̃tn−1
s )

)
ds

+

∫ tn

tn−1

(
σ(X̃tn−1) + σ(X

tn−1,X̃tn−1
s )

)
dWs,

we estimate separately

E
(
r(tn)

∫ tn

tn−1

(
b(X̃tn−1) + b(X

tn−1,X̃tn−1
s )

)
ds
∣∣Ftn−1

)
(4.11)

and

E
(
r(tn)

∫ tn

tn−1

(
σ(X̃tn−1) + σ(X

tn−1,X̃tn−1
s )

)
dWs

∣∣Ftn−1

)
. (4.12)

Taking into account that all terms in r(tn) are at least of the first order in h, we
obtain for (4.11)

E
(
r(tn)

∫ tn

tn−1

(
b(X̃tn−1) + b(X

tn−1,X̃tn−1
s )

)
ds
∣∣Ftn−1

)
≤ C

(
1 + |X̃tn−1 |2q

)
h2.
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To estimate (4.12) let us recall the remainder r(tn)

r(tn) =

∫ tn

tn−1

∫ s

tn−1

L0b(Xv)dvds+

∫ tn

tn−1

∫ s

tn−1

L1b(Xv)dWvds

+

∫ tn

tn−1

∫ s

tn−1

L0σ(Xv)dvdWs +

∫ tn

tn−1

∫ s

tn−1

L1σ(Xv)dWvdWs.

Inserting this expansion into (4.12) and considering the order of smallness with
respect to h, we can estimate all terms by h2 except the last term. To estimate the
last term

E
(∫ tn

tn−1

∫ s

tn−1

L1σ(Xv)dWvdWs ·
∫ tn

tn−1

(
σ(X̃tn−1)+σ(X

tn−1,X̃tn−1
z )

)
dWz

∣∣Ftn−1

)
we rewrite the second integral as a sum∫ tn

tn−1

(
σ(X

tn−1,X̃tn−1
z )− σ(X̃tn−1)

)
dWz +

∫ tn

tn−1

2σ(X̃tn−1)dWz.

Then, the integral

E
(∫ tn

tn−1

∫ s

tn−1

L1σ(Xv)dWvdWs ·
∫ tn

tn−1

(
σ(X

tn−1,X̃tn−1
z )−σ(X̃tn−1)

)
dWz

∣∣Ftn−1

)
is of order h2 due to the Hölder inequality, the Lipschitz property of σ, and the
estimate of Theorem 1.2

E
(∣∣∣Xtn−1,X̃tn−1

z −X
tn−1,X̃tn−1

tn−1

∣∣∣2) ≤ C|z − tn−1|.

The estimate is completed observing that

E
(∫ tn

tn−1

∫ s

tn−1

L1σ(Xv)dWvdWs ·
∫ tn

tn−1

2σ(X̃tn−1)dWs

∣∣Ftn−1

)
= E

(∫ tn

tn−1

2σ(X̃tn−1)

∫ s

tn−1

L1σ(Xv)dWvds
∣∣Ftn−1

)
= E

(∫ tn

tn−1

∫ tn

v
2σ(X̃tn−1)L

1σ(Xv)dsdWv

∣∣Ftn−1

)
= 0.

Hence we have proved that for k = 1, 2, 3∣∣∣E((X̃tn − X̃tn−1

)k − (Xtn−1,X̃tn−1

tn − X̃tn−1

)k∣∣Ftn−1

)∣∣∣ ≤ C
(
1+ |X̃tn−1 |2q

)
h2.
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Since the terms
(
X̃tn − X̃tn−1

)
and

(
X

tn−1,X̃tn−1

tn − X̃tn−1

)
are of order 1/2

with respect to h, as we have mentioned above, then we obtain for the remainders

E
(
|R(X̃tn)|

∣∣Ftn−1

)
= C

(
1 + |X̃tn−1 |2q

)
h2,

E
(
|R(Xtn−1,X̃tn−1

tn )|
∣∣Ftn−1

)
= C

(
1 + |X̃tn−1 |2q

)
h2.

Collecting all the above estimates, we obtain the desired estimate of the local
error ∣∣∣∣E(E(u(tn, X̃tn)− u(tn, X

tn−1,X̃tn−1

tn )|Ftn−1

))∣∣∣∣
≤ CE

((
1 + |X̃tn−1 |2q

)(
1 + |X̃tn−1 |2q

))
h2 ≤ C

(
1 + |x|4q

)
h2,

where x is the deterministic initial conditionXt0 = x, and the last estimate follows
from Theorem 1.2.

For the Milstein scheme, the order of weak convergence is also equal to 1.
The proof is analogous to the proof of the above theorem. The same order of
convergence as for the Euler-Maruyama scheme follows from the fact that for the
remainder in the Milstein approximation we have E

(
|r1(tn)|

∣∣Ftn−1

)
= O(h2)

analogously as for the remainder in the Euler-Maruyama approximation.



Chapter 5

Introduction to elliptic and
parabolic equations

5.1 Sobolev spaces

Partial differential equations require certain smoothness of their solutions to make
the equations meaningful. It is difficult to achieve that goal if derivatives are under-
stood in the classical sense. A space suitable for the analysis of equations with non-
smooth solutions is a space of functions with derivatives defined in a weak sense
called Sobolev’s space. (There are many books on the theory of partial differential
equations in Sobolev’s spaces. Our presentation follows the book by Evans [19]
where the reader can find more complete proofs.) To define Sobolev’s spaces, we
start with weakening the notion of derivatives. In what follows, we will consider
functions defined on U , an open subset of Rd.

DEFINITION. 5.1 Let u, v ∈ L1
loc(U) and α = (α1, . . . , αd) be a multi-index.

We call v the weak derivative of order α of u and write

Dαu = v,

if for each φ ∈ C∞
0 (U) (smooth with compact support) the equality holds∫
U
u(x)Dαφ(x)dx = (−1)|α|

∫
U
v(x)φ(x)dx,

where Dαφ(x) = ∂|α|φ(x)

∂x
α1
1 ...∂x

αd
d

and |α| = α1 + · · ·+ αd.

By Du we denote the weak gradient of u, i.e., the vector ( ∂u
∂x1

, . . . , ∂u
∂xd

) with the
partial derivatives understood in the weak sense.

91
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The Sobolev space is a space of functions that are differentiable in the weak
sense (their weak derivatives are well defined).

DEFINITION. 5.2 The Sobolev space W k,p(U) is a space of functions u: U →
R such that u and all weak derivatives Dαu, for |α| ≤ k, belong to Lp(U).

If p = 2, we write Hk(U) instead of W k,2(U).

THEOREM. 5.3 For each integer k ≥ 1, and 1 ≤ p ≤ ∞ the Sobolev space
W k,p(U) is a Banach space with the norm

∥u∥Wk,p(U) =

(∑
|α|≤k

∫
U
|Dαu|pdx

)1/p

, 1 ≤ p <∞,

∥u∥Wk,∞(U) =
∑
|α|≤k

ess sup
U

|Dαu|, p = ∞.

The Sobolev space W k,2(U) ≡ Hk(U) is a Hilbert space.

DEFINITION. 5.4 W k,p
0 (U) is the closure of C∞

0 (U) in W k,p(U).

THEOREM. 5.5 (Properties of Sobolev’s spaces) Let u, v∈W k,p(U) and |α| ≤
k. Then

1. Dαu ∈ W k−|α|,p(U) and Dβ(Dαu) = Dα(Dβu) = Dα+βu for all multi-
indices α, β such that |α|+ |β| ≤ k.

2. For all a1, a2 ∈ R the linear combination a1u + a2v ∈ W k,p(U) and
Dα(a1u+ a2v) = a1D

αu+ a2D
αv.

3. If V is an open subset of U , then u
∣∣
V
∈W k,p(V ).

4. If φ ∈ C∞
0 (U), then φu ∈W k,p(U), and

Dα(φu) =
∑
β≤α

(
α

β

)
DβφDα−βu.

It appears that although functions from Sobolev’s spaces are not smooth, they
can be approximated by smooth functions. The theorem below describes a proce-
dure of such approximation.

THEOREM. 5.6 Let U be an open, bounded set in Rd with ∂U of class C1. If
u ∈ W k,p(U) for 1 ≤ p < ∞, then there exists a sequence um ∈ C∞(Ū)
converging to u in the norm of W k,p(U).
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The space H−1

The space H−1(U) is the dual space to H1
0 (U), i.e., a space of continuous

linear functionals on H1
0 (U). The duality product ⟨f, u⟩ between H−1(U) and

H1
0 (U) denotes the action of functional f ∈ H−1(U) on element u ∈ H1

0 (U). The
norm in H−1(U) is given by the formula

∥f∥H−1(U) = sup
{
⟨f, u⟩: u ∈ H1

0 (U), ∥u∥H1
0 (U) ≤ 1

}
.

The following result, which follows straightforwardly from the Riesz theorem,
gives the representation of f ∈ H−1(U).

THEOREM. 5.7 Let f ∈ H−1(U). Then there exist functions f0, f1, . . . , fd be-
longing to L2(U) such that for each u ∈ H1

0 (U)

⟨f, u⟩ =
∫
U

(
f0u+

d∑
i=1

fi
∂u

∂xi

)
dx.

Traces of functions

Since a function in Lp(U) has no value at ”point x”, there is no natural meaning of
”restricting u to ∂U” and formulation of boundary value problems. Analyzing such
problems, we have to attach ”boundary values” to functions in Lp(U). We begin
with an extension of u on a larger set that contains U and also ∂U in its interior. It
appears that without difficulty, we can construct an extension on the whole Rd.

THEOREM. 5.8 Let U be a bounded, open set in Rd with ∂U of class C1 com-
pactly embedded in a bounded, open set V (U ⊂⊂ V ). Then there exists a bounded
linear operator

E: W 1,p(U) →W 1,p(Rd),

such that for each u ∈W 1,p(U), 1 ≤ p ≤ ∞, we have

1. Eu = u a.s. on U .

2. Eu has support in V .

3. ∥Eu∥W 1,p(Rd) ≤ C∥u∥W 1,p(U), where the constant C depends only on p, U
and V .
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Proof. The proof will be carried on for 1 ≤ p <∞. Fix x0 ∈ ∂U and assume that,
in a neighborhood of x0, ∂U is flat, given by equation xd = 0. Let B be an open
ball with center x0 and radius r such that

B+ = B ∩ {xd ≥ 0} ⊂ Ū ,

B− = B ∩ {xd ≤ 0} ⊂ Rd \ U.

Let assume for a moment that u ∈ C∞(Ū) and define a higher-order reflection
of u from B+ to B−

ū(x) =

{
u(x) for x ∈ B+,

−3u(x1, . . . , xd−1,−xd) + 4u(x1, . . . , xd−1,−xd
2 ) for x ∈ B−.

We will show that ū ∈ C1(B). Let u− = ū|B− , u+ = ū|B+ . Then ∂u−

∂xd
= ∂u+

∂xd
on

the hyperplane {xd = 0}. Indeed by differentiating u− we get

∂u−

∂xd
(x) = 3

∂u

∂xd
(x1, . . . , xd−1,−xd)− 2

∂u

∂xd
(x1, . . . , xd−1,−

xd
2
).

This proves that on {xd = 0}, we have the desired equality. Since on that hyper-
plane we have u+ = u−, then the derivatives with respect to xi, i = 1, . . . , d − 1
are equal. Hence

Dαu−|{xd=0} = Dαu+|{xd=0}

for |α| ≤ 1, which proves ū ∈ C1(B).
By the above computations, we also have

∥ū∥W 1,p(B) ≤ C∥u∥W 1,p(B+)

for the constant C independent of u.
This estimate can be extended on an arbitrary boundary of class C1, as each

C1 boundary can be straightened out near x0 by a diffeomorphic transformation.
Then we get

∥ū∥W 1,p(F ) ≤ C∥u∥W 1,p(U),

where F is the inverse image of B by this diffeomorphic transformation.
Since ∂U is compact, there are finitely many points x0i , their neighborhoods

Fi, and extensions ūi on Fi such that the sum of Fi covers the whole ∂U . Taking
a partition of unity ζi associated to this covering of ∂U and defining ū =

∑
ζiui,

we obtain
∥ū∥W 1,p(Rd) ≤ C∥u∥W 1,p(U), (5.1)
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where the constant C depends on p, U and d, but is independent of u. Let us
observe that the partition of unity ζi can be chosen to lie in a selected set V ⊃⊃ U .

By construction Eu = ū is a bounded, linear operator for u ∈ C∞(Ū). Pas-
sage from u ∈ C∞(Ū) to u ∈ W 1,p(U) can be obtained by the smooth approx-
imation of function in W 1,p(U) (Theorem 5.6). Let um ∈ C∞(Ū) approximate
u ∈W 1,p(U). By the linearity of E and estimate (5.1) we obtain

∥Eum − Eun∥W 1,p(Rd) ≤ C∥um − un∥W 1,p(U).

This shows that Eum is a Cauchy sequence converging to ū = Eu.

We can now address the problem of boundary values of u on ∂U . The following
theorem explains how to define ”boundary values”.

THEOREM. 5.9 (Trace theorem) Let U be an open, bounded set in Rd with ∂U
of class C1. There exists a linear, bounded operator

T : W 1,p(U) → Lp(∂U), 1 ≤ p <∞

such that

1. Tu = u
∣∣
∂U

for u ∈W 1,p(U) ∩ C(Ū).

2. ∥Tu∥Lp(∂U) ≤ C∥u∥W 1,p(U), where the constant C depends on p and U .

Proof. Similarly to the proof of the previous theorem, we select x0 ∈ ∂U and
assume that in a neighborhood of this point the boundary ∂U is flat (xd = 0). Let
B be an open ball with center x0 and radius r. Let B̂ be the concentric ball with
radius r/2. We select a function ζ ∈ C∞

0 such that ζ ≥ 0, ζ = 1 on B̂ and ζ = 0
in the exterior of B. Denoting x′ = (x1, . . . , xd−1) ∈ Rd−1 and Γ = ∂U ∩ B̂ we
get for u ∈ C1(Ū)∫

Γ
|u|pdx′ ≤

∫
{xd=0}

ζ|u|pdx′ = −
∫
B+

∂

∂xd

(
ζ|u|p

)
dx

= −
∫
B+

(
|u|p ∂ζ

∂xd
+ p|u|p−1 sgnu

∂u

∂xd
ζ
)
dx

≤ C

∫
B+

(
|u|p + |Du|p

)
dx,

where B+ = B ∩ {xd ≥ 0} and the last inequality is due to Young’s inequality
ab ≤ ap

p + bq

q .
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Since ∂U is compact, then similarly to the previous proof, we can cover this
set by a finite number of subsets and straighten out the boundary on each subset by
a homeomorphism of class C1. Then we get

∥u∥Lp(∂U) ≤ C∥u∥W 1,p(U).

If for u ∈W 1,p(U) ∩ C1(Ū) we define Tu = u|∂U , then we can write

∥Tu∥Lp(∂U) ≤ C∥u∥W 1,p(U), u ∈W 1,p(U) ∩ C1(Ū).

By Theorem 5.6 we can remove the condition u ∈ C1(Ū). If u ∈ W 1,p(U), there
exists a sequence um ∈ C∞(Ū) converging to u. By the linearity of T we get

∥Tum − Tun∥Lp(∂U) ≤ C∥um − un∥W 1,p(U).

Hence, Tum is a Cauchy sequence and defining

Tu = lim
m→∞

Tum

we extend T to each u ∈W 1,p(U) with the estimate

∥Tu∥Lp(∂U) ≤ C∥u∥W 1,p(U).

THEOREM. 5.10 Let U be a bounded set in Rd and ∂U be of class C1. If u ∈
W 1,p(U), then u ∈W 1,p

0 (U) if and only if Tu = 0 on ∂U .

Sobolev inequalities

We are now in the position to prove several inequalities between norms of various
Sobolev spaces. These inequalities prove the boundedness of embeddings between
different Sobolev spaces, which will serve the characterization of the regularity of
solutions of differential equations.

We begin with an embedding for functional spaces defined on the whole Rd.

THEOREM. 5.11 (Gagliardo-Nirenberg-Sobolev inequality) Let u ∈ C1
0 (Rd)

and 1 ≤ p < d. The following inequality holds for a constant C depending only
on p and d

∥u∥Lp∗ (Rd) ≤ C∥Du∥Lp(Rd),

where p∗ is defined as 1
p∗ = 1

p − 1
d and is called the Sobolev conjugate of p.
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Proof. We begin with the proof for p = 1. To simplify the notation we write
xi: = (x1, . . . , xi−1, yi, xi+1, . . . , xd).

Since the support of u is compact then

u(x) =

∫ xi

−∞

∂u(xi)
∂xi

dyi.

That gives the estimate

|u(x)| ≤
∫
R
|∂u(x

i)
∂xi

|dyi,

which can be extended to

|u(x)|
d

d−1 ≤
d∏

i=1

(∫
R
|∂u(x

i)
∂xi

|dyi
) 1

d−1

. (5.2)

Integrating the above inequality with respect to x1 and applying the generalized
Hölder inequality ∥∥∥ d∏

i=2

fi

∥∥∥
L1

≤
d∏

i=2

∥fi∥Ld−1 (5.3)

we obtain

∫
R
|u(x)|

d
d−1dx1 ≤

∫
R
dx1

d∏
i=1

(∫
R
|∂u(x

i)
∂xi

|dyi
) 1

d−1

=

(∫
R
|∂u(x)∂x1

|dx1
) 1

d−1
∫
R
dx1

d∏
i=2

(∫
R
|∂u(x

i)
∂xi

|dyi
) 1

d−1

≤
(∫

R
|∂u(x)∂x1

|dx1
) 1

d−1
d∏

i=2

(∫
R2

|∂u(x
i)

∂xi
|dx1dyi

) 1
d−1

=

(∫
R
|∂u(x)∂x1

|dx1
) 1

d−1
(∫

R2

|∂u(x)∂x2
|dx1dx2

) 1
d−1

×
d∏

i=3

(∫
R2

|∂u(x
i)

∂xi
|dx1dyi

) 1
d−1

.
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Integrating with respect to x2 and applying again inequality (5.3) we get∫
R2

|u(x)|
d

d−1dx1dx2 ≤
(∫

R2

|∂u(x)∂x2
|dx1dx2

) 1
d−1
∫
R
dx2

(∫
R
|∂u(x)∂x1

|dx1
) 1

d−1

×
d∏

i=3

(∫
R2

|∂u(x
i)

∂xi
|dx1dyi

) 1
d−1

≤
(∫

R2

|∂u(x)∂x2
|dx1dx2

) 1
d−1
(∫

R2

|∂u(x)∂x1
|dx1dx2

) 1
d−1

×
d∏

i=3

(∫
R3

|∂u(x
i)

∂xi
|dx1dx2dyi

) 1
d−1

.

Iterating these integrations we finally obtain∫
Rk

|u(x)|
d

d−1dx1dx2 . . . dxk ≤
k∏

i=1

(∫
Rk

|∂u(x)∂xi
|dx1dx2 . . . dxk

) 1
d−1

×
d∏

i=k+1

(∫
Rk+1

|∂u(x
i)

∂xi
|dx1dx2 . . . dxkdyi

) 1
d−1

.

For k = d we have∫
Rd

|u(x)|
d

d−1dx ≤
d∏

i=1

(∫
Rd

|∂u(x)∂xi
|dx1dx2 . . . dxd

) 1
d−1

≤
d∏

i=1

(∫
Rd

|Du(x)|dx
) 1

d−1

=

(∫
Rd

|Du(x)|dx
) d

d−1

.

This proves the theorem for p = 1.
The proof for 1 < p < d is obtained by substituting v = |u|γ , with γ > 1, in

the inequality for p = 1. Then(∫
Rd

|u(x)|
γd
d−1dx

) d−1
d

≤
∫
Rd

D|u(x)|γdx = γ

∫
Rd

|u(x)|γ−1|Du(x)|dx

≤ γ

(∫
Rd

|u(x)|(γ−1) p
p−1dx

) p−1
p
(∫

Rd

|Du(x)|pdx
) 1

p

.

Choosing γ such that γd
d−1 = (γ−1)p

p−1 we get γ = p(d−1)
d−p , which gives γd

d−1 = dp
d−p =

p∗. Such a choice of γ gives the following form of the last inequality(∫
Rd

|u(x)|p∗dx
) 1

p∗

≤ C

(∫
Rd

|Du(x)|pdx
) 1

p

.
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THEOREM. 5.12 (Poincaré’s inequality) Let U be an open, bounded set in Rd.
For u ∈W 1,p

0 (U), 1 ≤ p < d, we have the estimate

∥u∥Lq(U) ≤ C∥Du∥Lp(U),

where q ∈ [1, p∗] and the constant C depends on p, q, d and U , but is independent
of u.

Proof. We approximate u ∈ W 1,p
0 (U) by um ∈ C∞

0 (U). By Theorem 5.8 we
extend um on Rd in such a way that they are 0 on Rd \ U . By the Gagliardo-
Nirenberg-Sobolev inequality we have ∥um∥Lp∗ (Rd) ≤ C∥Dum∥Lp(Rd). Passing
to the limit with m we get ∥u∥Lp∗ (U) ≤ C∥Du∥Lp(U). As U is a bounded set, then
∥u∥Lq(U) ≤ C∥u∥Lp∗ (U) for 1 ≤ q ≤ p∗.

The next theorem proves the embedding of Sobolev’s spaces into Hölder’s
spaces defined below.

DEFINITION. 5.13 Let U be an open set in Rd. The Hölder space Ck,γ(U)
is a space of functions of class Ck(U) whose derivatives of order k are Hölder
continuous. A function u: U → R belongs to Ck,γ(U) if u ∈ Ck(U) and for each
multi-index α such that |α| = k

∥Dαu∥C0,γ(U) = sup
x,y∈U
x ̸=y

(
|Dαu(x)−Dαu(y)|

|x− y|γ

)
< +∞.

THEOREM. 5.14 (Morrey’s inequality) Let d < p ≤ ∞. Then for u ∈ C1(Rd)
we have the estimate

∥u∥C0,γ(Rd) ≤ C∥u∥W 1,p(Rd),

where the constant C depends only on p and d, and γ = 1− d/p.

Proof. We begin with the proof of the inequality∫
B(x,r)

|u(y)− u(x)|dy ≤ C

∫
B(x,r)

|Du(y)|
|y − x|d−1

dy, (5.4)

where B(x, r) is a ball with center x and radius r. By
∫
B(x,r) f(x)dx we denote

the average of f over the ball B(x, r), i.e.,
∫
B(x,r) f(x)dx divided by the volume

of B(x, r).
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Let y = x+ tω, where ω ∈ ∂B(0, 1). For 0 < s < r we get

u(x+ sω)− u(x) =

∫ s

0
Du(x+ tω) · ωdt.

That gives the inequality∫
∂B(0,1)

|u(x+ sω)− u(x)|dS(ω) ≤
∫ s

0

∫
∂B(0,1)

|Du(x+ tω)|dS(ω)dt

=

∫ s

0
td−1dt

∫
∂B(0,1)

|Du(x+ tω)|
|x+ tω − x|d−1

dS(ω)

=

∫
B(x,s)

|Du(y)|
|y − x|d−1

dy ≤
∫
B(x,r)

|Du(y)|
|y − x|d−1

dy.

Multiplying that inequality by sd−1 and integrating over [0, r] we get∫
B(x,r)

|u(y)− u(x)|dy ≤ rd

d

∫
B(x,r)

|Du(y)|
|y − x|d−1

dy.

That proves (5.4). We now prove

sup
Rd

|u| ≤ C∥u∥W 1,p(Rd). (5.5)

By inequality (5.4) we get for an arbitrary x ∈ Rd

|u(x)| =
∫
B(x,1)

|u(x)|dy ≤
∫
B(x,1)

(
|u(x)− u(y)|+ |u(y)|

)
dy

≤ C

∫
B(x,1)

|Du(y)|
|y − x|d−1

dy +

∫
B(x,1)

|u(y)|dy

≤ C

∫
B(x,1)

|Du(y)|
|y − x|d−1

dy + C∥u∥Lp(B(x,1))

≤ C

(∫
Rd

|Du(y)|pdy
) 1

p
(∫

B(x,1)

dy

|y − x|
(d−1)p
p−1

) p−1
p

+ C∥u∥Lp(B(x,1))

≤ C∥u∥W 1,p(Rd).

The convergence of the integral∫
B(x,1)

dy

|y − x|
(d−1)p
p−1



5.1. SOBOLEV SPACES 101

follows from the inequality (d−1)p
p−1 < d valid for p > d. As x is arbitrary, that

proves (5.5).
Let us choose any two points x, y ∈ Rd. Take r = |x− y| and V = B(x, r) ∩

B(y, r). Then

|u(x)− u(y)| ≤
∫
V
|u(x)− u(z)|dz +

∫
V
|u(y)− u(z)|dz.

For the integrals on the right hand side we have the estimate∫
V
|u(x)− u(z)|dz ≤ C

∫
B(x,r)

|u(x)− u(z)|dz

≤ C

(∫
B(x,r)

|Du(z)|pdz
) 1

p
(∫

B(x,r)

dz

|z − x|
(d−1)p
p−1

) p−1
p

≤ C
(
r
d− (d−1)p

p−1

) p−1
p ∥Du∥Lp(Rd) = Cr

1− d
p ∥Du∥Lp(Rd).

These estimates give together

|u(x)− u(y)| ≤ Cr
1− d

p ∥Du∥Lp(Rd) = C|x− y|1−
d
p ∥Du∥Lp(Rd).

Hence

∥u∥C0,1−d/p(Rd) = sup
x ̸=y

|u(x)− u(y)|
|x− y|1−d/p

≤ C∥Du∥Lp(Rd).

Together with inequality (5.5) that proves the theorem.

THEOREM. 5.15 (Sobolev inequalities) Let U be an open, bounded set in Rd

with a C1 boundary, or the whole Rd. For u ∈W k,p(U), 1 ≤ p <∞, we have

1. If k < d
p and l ≤ k, then u ∈ W k−l,q(U), where 1

q = 1
p − l

d . In particular,
for l = k we have u ∈ Lq(U). In addition, for a constant C depending only
on k, l, p, d and U we have the estimate

∥u∥Wk−l,q(U) ≤ C∥u∥Wk,p(U).

2. If k > d
p , then u ∈ Ck−[d/p]−1,γ(Ū). In addition, for a constantC depending

only on k, p, d, γ and U we have the estimate

∥u∥Ck−[d/p]−1,γ(Ū) ≤ C∥u∥Wk,p(U).
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The constant γ is given by the formula

γ =

{[
d
p

]
+ 1− d

p , if d/p is not an integer,

any positive number < 1, if d/p is an integer,

where [a] denotes the integer part of a.

Proof. Let k < d
p . As Dαu ∈ Lp(U) for |α| = k, then

∥Dβu∥Lp∗ (U) ≤ C∥u∥Wk,p(U), |β| = k − 1

by the Gagliardo-Nirenberg-Sobolev inequality. Hence, u ∈ W k−1,p∗(U) and
similarly u ∈ W k−2,p∗∗(U), where 1

p∗∗ = 1
p∗ − 1

d = 1
p − 2

d . Iterating these
embeddings we get after l steps u ∈W k−l,q(U) for 1

q = 1
p − l

d . That proves point
1. of the theorem.

Let now k > d
p . If d/p is not an integer, then by a similar reasoning as above

we get u ∈W k−l,r(U) for 1
r = 1

p −
l
d and lp < d. Choosing l =

[
d
p

]
we obtain r >

dp
d−pl > d. Then by Morrey’s inequality Dαu ∈ C0,1−d/r(Ū) for |α| ≤ k − l − 1.
Since 1 − d

r = 1 − d
p + l =

[
d
p

]
+ 1 − d

p = γ, where γ is the exponent in the
theorem assertion. Hence, u ∈ Ck−[d/p]−1,γ(Ū).

If d/p is an integer and k > d
p , then we can take l = d

p − 1. Similarly as before

u ∈W k−l,r(U), but this time r = dp
d−pl = d. By the Gagliardo-Nirenberg-Sobolev

inequality we have Dαu ∈ Lq(U) for all d ≤ q < ∞ and |α| ≤ k − l − 1 =
k − d

p . Then by Morrey’s inequality Dαu ∈ C0,1−d/q(Ū) for d < q < ∞ and
|α| ≤ k − d

p − 1. It follows then u ∈ Ck−d/p−1,γ(Ū) for each 0 < γ < 1.

For functions depending on the time variable, embedding theorems can be more
complicated as the function can belong to one functional space and its time deriva-
tive to another space. We present without proof a theorem that will be used in the
analysis of parabolic equations.

THEOREM. 5.16 Let u ∈ L2(0, T ;H1
0 (U)), du

dt ∈ L2(0, T ;H−1(U)). Then
u ∈ C([0, T ];L2(U)) and we have the estimate

max
0≤t≤T

∥u(t)∥L2(U) ≤ C
(
∥u∥L2(0,T ;H1

0 (U)) + ∥du
dt ∥L2(0,T ;H−1(U))

)
,

where the constant C depends only on T .
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5.2 Elliptic equations of second-order

We will now study the existence of solutions to elliptic differential equations in
an open, bounded set U ⊂ Rd. The condition that the trace of a solution on the
boundary ∂U is equal to a given function is called the Dirichlet boundary condition
and the differential problem with the Dirichlet boundary condition is called the
Dirichlet problem. We start with the investigation of the Dirichlet problem with
zero boundary conditions

Au = f, in U,

u|∂U = 0.
(5.6)

A is a second-order differential operator. Depending on the situation that op-
erator is considered in the divergence form

Au(x) =
d∑

i=1

d∑
j=1

− ∂

∂xi

(
aij(x)

∂u(x)

∂xj

)
+

d∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) (5.7)

or the nondivergence form

Au(x) =
d∑

i=1

d∑
j=1

−aij(x)
∂2u(x)

∂xi∂xj
+

d∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x). (5.8)

Remark. 5.1 If the coefficients aij are of class C1, then an operator written in
divergence form can be rewritten in nondivergence form with bi replaced by

b̄i = bi −
d∑

j=1

∂aij
∂xj

.

We will assume that A is a uniformly elliptic operator.

DEFINITION. 5.17 The differential operator A defined by (5.7) or (5.8) is called
uniformly elliptic, if aij = aji (i, j = 1, . . . , d) and

∃δ > 0 ∀x ∈ U ∀ξ ∈ Rd \ {0}
d∑

i=1

d∑
j=1

aij(x)ξiξj ≥ δ∥ξ∥2.

Our goal is to prove the existence (and uniqueness) of solutions for the Dirichlet
problem with a uniformly elliptic operator A. For the Dirichlet problem (5.6), we
define a weak solution.
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DEFINITION. 5.18 Let aij , bi, c ∈ L∞(U) (i, j = 1, . . . , d) and f ∈ L2(U).
We call u ∈ H1

0 (U) a weak solution of the Dirichlet problem (5.6) with A given in
divergence form if∫

U

( d∑
i,j=1

aij(x)
∂u(x)

∂xi

∂v(x)

∂xj
+

d∑
i=1

bi(x)
∂u(x)

∂xi
v(x) + c(x)u(x)v(x)

)
dx

=

∫
U
f(x)v(x)dx,

for each v ∈ H1
0 (U)

The existence of weak solutions to problem (5.6) follows from the Lax-Mil-
gram theorem.

THEOREM. 5.19 (Lax-Milgram theorem) Let B : H × H → R be a bilinear
functional in a Hilbert space H such that

∀u, v ∈ H |B[u, v]| ≤ α∥u∥∥v∥, α > 0,

∀u ∈ H |B[u, u]| ≥ β∥u∥2, β > 0.

If f : H → R is a bounded linear functional in H , then there exists a unique
element u ∈ H such that

B[u, v] = (f, v), ∀v ∈ H,

where ∥ · ∥ and (·, ·) denote the norm and the scalar product in H , respectively.

THEOREM. 5.20 (Energy estimates) Let u, v ∈ H1
0 (U) and

B[u, v] =

∫
U

( d∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
+

d∑
i=1

bi
∂u

∂xi
v + cuv

)
dx.

There exist constants α, β > 0 and γ ≥ 0 such that

|B[u, v]| ≤ α∥u∥H1
0 (U)∥v∥H1

0 (U),

β∥u∥2H1
0 (U) ≤ B[u, u] + γ∥u∥2L2(U).

Proof. Since aij , bi, c ∈ L∞(U) (i, j = 1, . . . , d) we have the estimate

|B[u, v]| ≤
d∑

i,j=1

∥aij∥L∞(U)

∫
U
|Du||Dv|dx+

d∑
i=1

∥bi∥L∞(U)

∫
U
|Du||v|dx

+ ∥c∥L∞(U)

∫
U
|u||v|dx ≤ C∥u∥H1

0 (U)∥v∥H1
0 (U).
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By the uniform ellipticity

δ

∫
U
|Du|2dx ≤

∫
U

d∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx = B[u, u]−

∫
U

( d∑
i=1

bi
∂u

∂xi
u+ cu2

)
dx

≤ B[u, u] +

d∑
i=1

∥bi∥L∞(U)

∫
U
|Du||u|dx+ ∥c∥L∞(U)

∫
U
|u|2dx.

In Cauchy’s inequality∫
U
|Du||u|dx ≤ ϵ

∫
U
|Du|2dx+

1

4ϵ

∫
U
|u|2dx

we select ϵ such that ϵ
∑d

i=1 ∥bi∥L∞(U) <
δ
2 . Then

δ

2

∫
U
|Du|2dx ≤ B[u, u] + C

∫
U
|u|2dx.

By Poincaré’s inequality ∥u∥L2(U) ≤ C∥Du∥L2(U) we get the estimate

∥u∥H1
0 (U) ≤ C∥Du∥L2(U).

It easily follows that

β∥u∥2H1
0 (U) ≤ B[u, u] + γ∥u∥2L2(U).

Remark. 5.2 In the rest of this chapter (u, v) will denote the standard scalar prod-
uct in L2(U) also for u, v ∈ H1

0 (U).

THEOREM. 5.21 (Existence of weak solutions) There is a constant γ ≥ 0 such
that for each µ ≥ γ and f ∈ L2(U), there exists a unique weak solution u ∈
H1

0 (U) of the Dirichlet problem with A in divergence form

Au+ µu = f, in U,

u|∂U = 0.
(5.9)

Proof. Let γ be the constant from Theorem 5.20. Taking µ ≥ γ we define

Bµ[u, v] = B[u, v] + µ(u, v), u, v ∈ H1
0 (U).



106 CHAPTER 5. INTRODUCTION TO PDE

Bµ[u, v] fulfills the assumptions of the Lax-Milgram theorem. For f ∈ L2(U) we
define a linear functional ⟨f, v⟩ = (f, v). Applying the Lax-Milgram theorem to
the equation

Bµ[u, v] = ⟨f, v⟩,

we find a unique u ∈ H1
0 (U) fulfilling the conclusion of the theorem. Hence u is a

unique weak solution of the Dirichlet problem (5.9).

We close our analysis of Dirichlet’s problem with zero boundary conditions
with a theorem that describes the improvement of solution regularity for more reg-
ular data. We present this theorem without proof which is technically complicated.

THEOREM. 5.22 (Higher regularity) Let aij , bi, c∈Cm+1(Ū) (i, j = 1, . . . , d)
and f ∈Hm(U). Assume that u ∈ H1

0 (U) is a unique weak solution of the Dirich-
let problem (5.9) with ∂U of class Cm+2. Then u ∈ Hm+2(U) and we have the
estimate

∥u∥Hm+2(U) ≤ C∥f∥Hm(U),

where the constant C depends only on the coefficients of A, m, and U .

For the Dirichlet problem with non-zero boundary conditions, we have the fol-
lowing theorem.

THEOREM. 5.23 If the boundary ∂U is of class C1, then there is a constant
γ ≥ 0 such that for each µ ≥ γ, f ∈ L2(U) and w ∈ H1(U) there exists a unique
weak solution u ∈ H1(U) of the Dirichlet problem with A in divergence form

Au+ µu = f, in U,

Tu = Tw, on ∂U.
(5.10)

Proof. Let ũ ∈ H1
0 (U) be a weak solution of the problem

Aũ+ µũ = f̃ , in U,

ũ|∂U = 0,

where f̃ = f −Aw − µw ∈ H−1(U).
The existence of ũ follows by the Lax-Milgram theorem, as ⟨f̃ , v⟩ defines for

v ∈ H1
0 (U) a bounded linear functional ⟨f̃ , v⟩ = (f, v)−B[w, v]−µ(w, v). Then

u = ũ+ w is a unique weak solution of (5.10).
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5.3 Parabolic equations of second-order

Let U ⊂ Rd be an open, bounded domain and UT = (0, T ] × U , T > 0. We will
study the initial-boundary value problem with the Dirichlet boundary conditions

∂
∂tu+Atu = f, in UT ,

u = 0, on [0, T ]× ∂U,

u = g, on {t = 0} × U.

(5.11)

Similarly as in the elliptic case we consider the operator At in the divergence
form

Atu(t, x)

=
d∑

i=1

d∑
j=1

− ∂

∂xi

(
aij(t, x)

∂u(t, x)

∂xj

)
+

d∑
i=1

bi(t, x)
∂u(t, x)

∂xi
+ c(t, x)u(t, x)

and the nondivergence form

Atu(t, x) =

d∑
i=1

d∑
j=1

−aij(t, x)
∂2u(t, x)

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂u(t, x)

∂xi
+ c(t, x)u(t, x).

DEFINITION. 5.24 The second-order operator ∂
∂t + At is called uniformly pa-

rabolic if aij = aji (i, j = 1, . . . , d) and

∃δ > 0 ∀(t, x) ∈ UT ∀ξ ∈ Rd \ {0}
d∑

i=1

d∑
j=1

aij(t, x)ξiξj ≥ δ∥ξ∥2.

The function u(t, x) which solves problem (5.11) will be treated as a mapping
u: [0, T ] → H1

0 (U). Then u(t) denotes the value of that function in H1
0 (U).

DEFINITION. 5.25 Let aij , bi, c ∈ L∞(UT ) (i, j = 1, . . . , d), f ∈ L2(UT )
and g ∈ L2(U). A function u ∈ L2(0, T ;H1

0 (U)) is called a weak solution
of the initial-boundary value problem (5.11) with At in divergence form if du

dt ∈
L2(0, T ;H−1(U)) and

1. For any v ∈ H1
0 (U)

⟨ d
dtu(t), v⟩+Bt[u(t), v] = (f(t), v),

where the equality holds almost everywhere in t and

Bt[u, v] =

∫
U

( d∑
i,j=1

aij(t, x)
∂u

∂xi

∂v

∂xj
+

d∑
i=1

bi(t, x)
∂u

∂xi
v + c(t, x)uv

)
dx.
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2. u(0) = g.

If u ∈ L2(0, T ;H1
0 (U)) and du

dt ∈ L2(0, T ;H−1(U)), then u ∈ C([0, T ];L2(U)),
which means that the equality of point 2. makes sens (cf. Theorem 5.16).

Galerkin approximation

Since H1
0 (U) ⊂ L2(U) and both spaces are Hilbert spaces, we can select the

basis {ψk}∞k=1, which is an orthonormal basis of L2(U) and an orthogonal basis
of H1

0 (U). We can choose as ψk the basis of eigenvectors in H1
0 (U) of a uni-

formly elliptic operator A0 =
∑d

i,j=1−
∂
∂xi

(
aij(x)

∂u(x)
∂xj

)
(for details see Evans

[19][Section 6.5]). For a fixed m, we define the function

um(t) =
m∑
k=1

dkm(t)ψk.

We are looking for a choice of coefficients dkm which makes um an approximation
of a solution to (5.11). Thus we seek um as a solution of the discrete approximation
of (5.11):

( d
dtum(t), ψk) +Bt[um(t), ψk] = (f(t), ψk), 0 < t ≤ T, k = 1, . . . ,m,

dkm(0) = (g, ψk), k = 1, . . . ,m.

(5.12)

THEOREM. 5.26 For every m ≥ 1 there exists a unique function um which
solves (5.12).

Proof. By the definition of um we have ( d
dtum, ψk) = d

dtd
k
m. We have also the

equality

Bt[um(t), ψk] =
m∑
i=1

eki(t)dim(t),

where eki(t) = Bt[ψi, ψk].
Denoting fk(t) = (f, ψk) and using the above equalities we transform (5.12)

into a linear system of ordinary differential equations

d
dtd

k
m +

m∑
i=1

ekidim = fk, k = 1, . . . ,m,

with initial conditions dkm(0) = (g, ψk).
As a linear system, it possesses a unique solution. Thus, we obtain a unique solu-
tion of (5.12).
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THEOREM. 5.27 (Energy estimates) If um is a solution of (5.12), then

max
0≤t≤T

∥um(t)∥L2(U) + ∥um∥L2(0,T ;H1
0 (U)) + ∥ d

dtum∥L2(0,T ;H−1(U))

≤ C
(
∥f∥L2(0,T ;L2(U)) + ∥g∥L2(U)

)
, m = 1, 2, . . . ,

(5.13)

where the constant C depends on U , T and the coefficients of At.

Proof. We estimate separately every term on the left hand side of (5.13).
Multiplying (5.12) by dkm and summing over k from 1 to m we get

( d
dtum(t), um(t)) +Bt[um(t), um(t)] = (f(t), um(t)). (5.14)

By Theorem 5.20 and the uniform boundedness in t of the coefficients of Bt[u, v]
we obtain the estimate

β∥um(t)∥2H1
0 (U) ≤ Bt[um(t), um(t)] + γ∥um(t)∥2L2(U),

where β > 0, γ ≥ 0.
Since ( d

dtum(t), um(t)) = d
dt

(
1
2∥um(t)∥2L2(U)

)
and

|(f(t), um(t))| ≤ 1

2
∥f(t)∥2L2(U) +

1

2
∥um(t)∥2L2(U),

we can use the estimate of Theorem 5.20 to replace (5.14) by the inequality

d

dt
∥um(t)∥2L2(U) + 2β∥um(t)∥2H1

0 (U) ≤ C1∥um(t)∥2L2(U) + C2∥f(t)∥2L2(U),

(5.15)
which holds a.e. in t.

Inequality (5.15) remains valid if we neglect 2β∥um(t)∥2
H1

0 (U)
on the left hand

side. Then we obtain η′ ≤ C1η + C2ξ, where η = ∥um(t)∥2L2(U) and ξ =

∥f(t)∥2L2(U). By Gronwall’s lemma we get

η(t) ≤ eC1t
(
η(0) + C2

∫ t

0
ξ(s)ds

)
.

Since η(0) = ∥um(0)∥2L2(U) ≤ ∥g∥2L2(U), then

max
0≤t≤T

∥um(t)∥2L2(U) ≤ C
(
∥g∥2L2(U) + ∥f∥2L2(0,T ;L2(U))

)
. (5.16)
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To estimate the second term in (5.13) we integrate (5.15) over [0, T ] and apply
(5.16)

∥um∥2L2(0,T ;H1
0 (U)) =

∫ T

0
∥um(t)∥2H1

0 (U)dt ≤ C
(
∥f∥2L2(0,T ;L2(U)) + ∥g∥2L2(U)

)
.

To estimate the last term of (5.13) we select v ∈ H1
0 (U), ∥v∥H1

0 (U) ≤ 1, and
split this v into orthogonal components v = v1 + v2, where v1 ∈ Lin(ψ1, . . . , ψm)
and (v2, ψk) = 0, k = 1, . . . ,m. Then ∥v1∥H1

0 (U) ≤ ∥v∥H1
0 (U) ≤ 1.

From (5.12) we obtain

( d
dtum(t), v1) +Bt[um(t), v1] = (f(t), v1).

Since

⟨ d
dtum(t), v⟩ = ( d

dtum(t), v) = ( d
dtum(t), v1) = (f(t), v1)−Bt[um(t), v1],

then by the elementary inequality |a−b| ≤ |a|+|b| and the estimate ∥v1∥H1
0 (U) ≤ 1

we get

|⟨ d
dtum(t), v⟩| ≤ C

(
∥f(t)∥L2(U) + ∥um(t)∥H1

0 (U)

)
.

Thus
∥ d
dtum(t)∥H−1(U) ≤ C

(
∥f(t)∥L2(U) + ∥um(t)∥H1

0 (U)

)
.

Squaring the above inequality and integrating we obtain the desired estimate∫ T

0
∥ d
dtum(t)∥2H−1(U)dt ≤ C

∫ T

0

(
∥f(t)∥2L2(U) + ∥um(t)∥2H1

0 (U)

)
dt

≤ C
(
∥f∥2L2(0,T ;L2(U)) + ∥g∥2L2(U)

)
.

THEOREM. 5.28 Let aij , bi, c ∈ L∞(UT ) (i, j = 1, . . . , d), f ∈ L2(UT ) and
g ∈ L2(U). Then there exists a unique weak solution u(t) of (5.11) with At

in divergence form. For this solution we have u ∈ L2(0, T ;H1
0 (U)) and du

dt ∈
L2(0, T ;H−1(U)).

Proof. We begin with the proof of existence. The sequences of Galerkin’s approx-
imations um ∈ L2(0, T ;H1

0 (U)) and d
dtum ∈ L2(0, T ;H−1(U)) are bounded

due to the estimates of the previous theorem. Thus there exists a function u ∈
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L2(0, T ;H1
0 (U)) with du

dt ∈ L2(0, T ;H−1(U)) and a weakly convergent subse-
quence (which we also index with m)

um ⇀ u, in L2(0, T ;H1
0 (U)),

d
dtum ⇀ d

dtu, in L2(0, T ;H−1(U)).

Let us define

v =
N∑
k=1

wk(t)ψk, (5.17)

with smoothwk(t) such that v ∈ C1(0, T ;H1
0 (U)). We multiply (5.12) form ≥ N

by wk(t), sum with respect to k from 1 to N , and integrate the sum with respect to
t in [0, T ]∫ T

0

(
⟨ d
dtum(t), v(t)⟩+Bt[um(t), v(t)]

)
dt =

∫ T

0
(f(t), v(t))dt.

Passing to the limit with m (weak convergence) we obtain∫ T

0

(
⟨ d
dtu(t), v(t)⟩+Bt[u(t), v(t)]

)
dt =

∫ T

0
(f(t), v(t))dt, (5.18)

where the equality holds for any v ∈ L2(0, T ;H1
0 (U)), as functions of the form

(5.17) are dense in L2(0, T ;H1
0 (U)). Since v ∈ L2(0, T ;H1

0 (U)) is arbitrary, we
obtain for each z ∈ H1

0 (U) and a.e. t ∈ [0, T ] the equality

⟨ d
dtu(t), z⟩+Bt[u(t), z] = (f(t), z). (5.19)

Furthermore, u ∈ C([0, T ];L2(U)) by Theorem 5.16.
To prove u(0) = g we use the smoothness of wk(t). Integrating by parts we

can write (5.18) as∫ T

0

(
−⟨ d

dtv(t), u(t)⟩+Bt[u(t), v(t)]
)
dt =

∫ T

0
(f(t), v(t))dt+ (u(0), v(0))

for v ∈ C1(0, T ;H1
0 (U)) such that v(T ) = 0.

Similarly∫ T

0

(
−⟨ d

dtv(t), um(t)⟩+Bt[um(t), v(t)]
)
dt =

∫ T

0
(f(t), v(t))dt+(um(0), v(0)).

Passing in the last equality to the limit with m we obtain∫ T

0

(
−⟨ d

dtv(t), u(t)⟩+Bt[u(t), v(t)]
)
dt =

∫ T

0
(f(t), v(t))dt+ (g, v(0)),
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since um(0) → g in L2(U), which follows from the initial condition dkm(0) =
(g, ψk) in Theorem 5.26. As v(0) is arbitrary, we get u(0) = g.

Let us now prove uniqueness. Choosing f = 0, g = 0 we will prove u = 0.
Inserting z = u(t) in (5.19) we get

d

dt

(1
2
∥u(t)∥2L2(U)

)
+Bt[u(t), u(t)] = 0,

for a.e. t.
Since by Theorem 5.20, we have the inequality

Bt[u(t), u(t)] ≥ β∥u(t)∥2H1
0 (U) − γ∥u(t)∥2L2(U) ≥ −γ∥u(t)∥2L2(U),

then
d

dt

(1
2
∥u(t)∥2L2(U)

)
− γ∥u(t)∥2L2(U) ≤ 0.

By Gronwall’s lemma we get u = 0 for u(0) = g = 0.

THEOREM. 5.29 (Regularity of solutions) Let the coefficients aij , bi (i, j =
1, . . . , d) and c are C1 in x and do not depend on t. Assume g ∈ H1

0 (U) and
f ∈ L2(0, T ;L2(U)) with ∂U smooth enough. Then u which is a weak solution
of (5.11) such that u ∈ L2(0, T ;H1

0 (U)), du
dt ∈ L2(0, T ;H−1(U)) is in fact more

regular

u ∈ L2(0, T ;H2(U)) ∩ L∞(0, T ;H1
0 (U)), du

dt ∈ L2(0, T ;L2(U)).

If, in addition, g ∈ H2(U), df
dt ∈ L2(0, T ;L2(U)), then

u ∈ L∞(0, T ;H2(U)), du
dt ∈ L∞(0, T ;L2(U)) ∩ L2(0, T ;H1

0 (U)),

d2u
dt2

∈ L2(0, T ;H−1(U)).

Remark. 5.3 For g ∈ H2m+1(U) ∩ H1
0 (U), dkf

dtk
∈ L2(0, T ;H2m−2k(U)), k =

0, 1, . . . ,m, we can show that dku
dtk

∈ L2(0, T ;H2m+2−2k(U)), k = 0, 1, . . . ,m+
1, if ∂U is sufficiently smooth.

THEOREM. 5.30 (Maximum principle) Let At be given in the nondivergence
form with c = 0 and u ∈ C1,2(UT ) ∩ C(ŪT ).
If

∂
∂tu+Atu ≤ 0 in UT ,

then
max
ŪT

u = max
ΓT

u, where ΓT = ŪT \ UT .
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If
∂
∂tu+Atu ≥ 0 in UT ,

then
min
ŪT

u = min
ΓT

u.

Proof. We will present the proof for the strict inequality ∂
∂tu+Atu < 0 only. Let

u(t0, x0) = maxŪT
u, where (t0, x0) ∈ UT . If 0 < t0 < T , then (t0, x0) belong to

the interior of UT (U is open). Then ∂u
∂t (t0, x0) = 0, since this point is a maximum

of u.
On the other hand, Atu ≥ 0 at (t0, x0). This claim is due to the following

observations: at maximum the matrix of second derivatives{
∂2u

∂xi∂xj

}d

i,j=1

is negative semi-definite, and the matrix of the coefficients{
aij(t0, x0)

}d

i,j=1

is symmetric and positive definite (At is uniformly parabolic). Thus there exists
an orthogonal transformation S = {sij}di,j=1, which transforms the matrix of the
coefficients into a diagonal matrix {eii}di,j=1 with eii > 0 for each i. Performing
the change of variables y = x0 + S(x− x0) we get

d∑
i,j=1

aij(t0, x0)
∂2u(t0, x0)

∂xi∂xj
=

d∑
i=1

eii
∂2u(t0, x0)

∂y2i
≤ 0.

On the other hand, the vector of the first derivatives{
∂u

∂xi

}d

i=1

is zero (maximum). Hence

Atu(t0, x0) = −
d∑

i,j=1

aij(t0, x0)
∂2u(t0, x0)

∂xi∂xj
+

d∑
i=1

bi(t0, x0)
∂u(t0, x0)

∂xi
≥ 0.

Thus ∂
∂tu+Atu ≥ 0 at (t0, x0),which contradicts the assumption ∂

∂tu+Atu < 0.
If t0 = T , then as (t0, x0) is the point of maximum, we have ∂

∂tu ≥ 0 at
(t0, x0) (u grows as t ↗ t0 since at t0 is a maximum). Then ∂

∂tu +Atu ≥ 0 (the
inequality Atu ≥ 0 is still valid), which again gives a contradiction.
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THEOREM. 5.31 Let At be given in the nondivergence form with c ≥ 0 in UT

and u ∈ C1,2(UT ) ∩ C(ŪT ).
If

∂
∂tu+Atu ≤ 0 in UT ,

then
max
ŪT

u ≤ max
ΓT

u+,

where u+ = max(u, 0).
If

∂
∂tu+Atu ≥ 0 in UT ,

then
min
ŪT

u ≥ −max
ΓT

u−,

where u− = max(−u, 0).

COROLLARY. 5.32 (Comparison principle) Let u, v ∈ C1,2(UT )∩C(ŪT ) and
At be given in the nondivergence form with c ≥ 0.

If

∂
∂tu+Atu ≥ 0 in UT ,
∂
∂tv +Atv ≤ 0 in UT ,

u ≥ v on ΓT ,

then u ≥ v in UT .

Proof. Taking z = u− v we obtain

∂
∂tz +Atz ≥ 0 in UT ,

z ≥ 0 on ΓT .

By Theorem 5.31 we get z ≥ 0 in UT .

5.4 The Black-Scholes equation

The Black-Scholes equation is a standard example of a second-order parabolic
equation in finance. Let us recall that the equation describes the time dynamics
of option prices as functions of the underlying price s and time t

∂V (t, s)

∂t
+

1

2
σ2s2

∂2V (t, s)

∂s2
+ rs

∂V (t, s)

∂s
− rV (t, s) = 0, (5.20)
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with the terminal condition which is the option payoff

V (T, s) = g(s),

and the problem is defined on [0, T ]× [0,∞).
The presented earlier theory of parabolic equations cannot be directly applied

to the Black-Scholes equation:

1. The domain is unbounded as s ∈ [0,∞).

2. The coefficients in the equation are unbounded.

These problems can be solved by:

1. Building a separate theory suitable for the Black-Scholes equation. Such
a theory requires special functional spaces in which we mimic the Sobolev
space approach presented above. We will describe briefly that method later
on.

2. Making a suitable change of variables to reduce the Black-Scholes equation
to one of the problems analyzed in this chapter. We describe that approach
below, omitting technical details.

We can eliminate the unbounded coefficients substituting x = ln s. We also
substitute τ = T − t replacing terminal conditions by initial conditions. Due to
these substitutions we obtain the initial value problem

∂u

∂τ
− 1

2
σ̃2(τ, x)

∂2u

∂x2
+ b(τ, x)

∂u

∂x
+ c(τ, x)u = 0,

u(0, x) = g̃(x),

(5.21)

where u(τ, x) = V (T − τ, ex). The coefficients σ̃, b, and c are bounded (the
boundedness follows by their financial meaning) but the domain is unbounded:
x ∈ R (σ̃, g̃ denote functions σ and g after the above change of variables).

Assuming additionally that σ̃(τ, ·) is of class C1 in x and the following esti-
mates are uniform in τ

0 < σL ≤ σ̃(τ, x) ≤ σU ,
∣∣∣∂σ̃(τ, x)

∂x

∣∣∣ ≤ C, (5.22)

we can transform (5.21) to the divergence form

∂u

∂τ
− 1

2

∂

∂x

(
σ̃2(τ, x)

∂u

∂x

)
+ b̄(τ, x)

∂u

∂x
+ c(τ, x)u = 0,

u(0, x) = g̃(x).
(5.23)
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Equation (5.23) is an example of second-order parabolic equations in an un-
bounded domain UT = (0, T ] × Rd. Such equations are investigated in weighted
Sobolev spaces. Let us consider the general case

∂
∂tu+Atu = f, in UT ,

u = g, on {t = 0} × Rd,
(5.24)

where ∂
∂t +At is uniformly parabolic and

Atu(t, x)=
d∑

i,j=1

− ∂

∂xi

(
aij(t, x)

∂u(t, x)

∂xj

)
+

d∑
i=1

bi(t, x)
∂u(t, x)

∂xi
+c(t, x)u(t, x).

Let L2
ρ(Rd) denote the space with weight ρ

L2
ρ(Rd) =

{
u:

∫
Rd

|u(x)|2ρ(x)dx < +∞
}
.

The norm in that space is defined by the formula

∥u∥L2
ρ
=
(∫

Rd

|u(x)|2ρ(x)dx
)1/2

.

We define also spaces Hk
ρ (Rd) with the norm

∥u∥Hk
ρ
= ∥u∥L2

ρ
+
∑
|α|≤k

∥Dαu∥L2
ρ
.

DEFINITION. 5.33 The weight functions ρ(x) are functions of class C1(Rd)
such that ρ(x)−1Dρ(x) are bounded uniformly in x ∈ Rd.

The proof of existence and uniqueness of problem (5.24) is analogous to the
proof for a bounded domain U .

First, integrating by parts the second-order terms in At we define for every
u, v ∈ H1

ρ (Rd) the bilinear form

Bt
ρ[u, v] =

∫
Rd

( d∑
i,j=1

aij(t, x)
∂u

∂xi

∂v

∂xj
+

d∑
i=1

b̂i(t, x)
∂u

∂xi
v + c(t, x)uv

)
ρ(x)dx,

(5.25)
where

b̂i(t, x) = bi(t, x) +
d∑

j=1

aij(t, x)
1

ρ(x)

∂ρ(x)

∂xj
.
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Assuming aij , bi, c ∈ L∞(UT ) (i, j = 1, . . . , d) and the symmetry aij = aji
we can obtain the energy estimates for Bt

ρ[u, v] with u, v ∈ H1
ρ (Rd)

|Bt
ρ[u, v]| ≤ α∥u∥H1

ρ
∥v∥H1

ρ
,

β∥u∥2H1
ρ
≤ Bt

ρ[u, u] + γ∥u∥2L2
ρ
.

The proof of the above estimates is similar to the proof for a bounded U . The only
difference is in the passage from the estimate

β∥Du∥2L2
ρ
≤ Bt

ρ[u, u] + γ∥u∥2L2
ρ

to the estimate
β∥u∥2H1

ρ
≤ Bt

ρ[u, u] + γ∥u∥2L2
ρ
.

For a bounded U we have used Poincaré’s inequality. In Rd we replace ∥Du∥2L2
ρ

by ∥u∥2H1
ρ

by adding β∥u∥2L2
ρ

to both sides which only increases the constant γ.
Like in the case of a bounded U we look at a solution of (5.24) as a mapping

u : [0, T ] → H1
ρ (Rd). Multiplying (5.24) by ρ(x)v(x), with v ∈ H1

ρ (Rd), and
integrating on [0, T ] we obtain the weak form of the equation

⟨ d
dtu(t), v⟩+Bt

ρ[u(t), v] = ⟨f(t), v⟩,
u(0) = g,

(5.26)

where ⟨v∗, v⟩ denotes the value of functionals v∗ from H−1
ρ , the space dual to H1

ρ ,
on elements v ∈ H1

ρ . Similarly as for a bounded U , H1
ρ is densely embedded in

L2
ρ, which from its part is densely embedded in H−1

ρ .

Remark. 5.4 To prove the existence of solutions for (5.24) by the Lax-Milgram
theorem we need coerciveness of the bilinear form Bt

ρ[u, u]

β∥u∥2H1
ρ
≤ Bt

ρ[u, u].

This cannot be obtained by adding to c(x) a large constant like in Theorem 5.21
since now c(x) has a clear financial meaning. Then we can achieve the same effect
by the change of variables uγ(t) = e−γtu(t). Then uγ(t) solves (5.24) in which
the bilinear form Bt

ρ[u, v] is replaced by

Bt
ρ,γ [u, v] = Bt

ρ[u, v] + γ(u, v)L2
ρ
,

where (u, v)L2
ρ

denotes the scalar product in L2
ρ(Rd). It is obvious that Bt

ρ,γ [u, u]
is already coercive.
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Making the change of variables described above, integrating equation (5.26)
on [0, τ ] and applying the coerciveness of Bt

ρ,γ [u, u], we obtain the estimate for
τ ∈ [0, T ]

e−2γτ∥u(τ)∥2L2
ρ
+(2β−ϵ)

∫ τ

0
e−2γs∥u(s)∥2H1

ρ
ds ≤ ∥g∥2L2

ρ
+ϵ−1

∫ τ

0
∥f(s)∥2

H−1
ρ
ds,

(5.27)
where β is the constant from the coerciveness estimate for Bt

ρ,γ [u, u] and ϵ > 0 is
a small constant.

Estimate (5.27) is the energy estimate for (5.24). Due to this estimate, the
Galerkin approximation of (5.24) has a convergent subsequence. Then we have the
following theorem.

THEOREM. 5.34 Assume aij , bi, c ∈ L∞(UT ) (i, j = 1, . . . , d), g ∈ L2
ρ and

f ∈ L2(0, T ;H−1
ρ ). Then there exists a unique weak solution u(t) of the initial

value problem (5.24) such that u ∈ L2(0, T ;H1
ρ ) with du

dt ∈ L2(0, T ;H−1
ρ ) and

the following estimate holds for τ ∈ [0, T ]

e−2γτ∥u(τ)∥2L2
ρ
+(2β−ϵ)

∫ τ

0
e−2γs∥u(s)∥2H1

ρ
ds ≤ ∥g∥2L2

ρ
+ϵ−1

∫ τ

0
∥f(s)∥2

H−1
ρ
ds.

The above theorem enables us to make the right choice of the weight function
ρ(x). For the theorem to work we need g ∈ L2

ρ. As g is the option payoff, we have
to choose ρ that makes this payoff an element of L2

ρ.
Consider as an example a vanilla call option with payoff (s−K)+. Passing to

x = ln s we get g(x) =
(
ex − K

)+
. Then a proper weight function is ρ(x) =

e−λφ(x), where φ(x) = (1 + |x|2)1/2 and λ > 0 is sufficiently large.

Remark. 5.5 Assume that σ and r in the Black-Scholes equation (5.20) are con-
stant. Then there is a change of variables which makes the equation particularly
simple. Namely, making the following change to the independent variables

x = ln s, τ =
σ2

2
(T − t)

and of the dependent variable

u(τ, x) := exp

(
1

2
(q − 1)x+

1

4
(q + 1)2τ

)
V

(
T − 2τ

σ2
, ex
)
,
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where q = 2r
σ2 , we obtain the heat equation which is particularly suitable for nu-

merical computations

∂u(τ, x)

∂τ
− ∂2u(τ, x)

∂x2
= 0, τ ∈

[
0,
σ2

2
T
]
, x ∈ R,

u(0, x) = e
1
2
(q−1)xg(ex), x ∈ R.

For numerical practice, the existence theorem in Rd is not so important as ob-
taining numerical solutions on Rd is impossible. For numerical computations we
have to limit considerations to a bounded domain U ⊂ Rd and introduce artificial
boundaries and artificial boundary conditions. For initial-boundary value prob-
lems localized on bounded sets, the theory developed in Sobolev spaces without
weights is applicable. The choice of a bounded domain U has to be a compromise
between the numerical error, which usually decreases with the size of U , and the
computational time, which increases with the size of U .

A crucial problem for controlling numerical error is the choice of artificial
boundary conditions. In quantitative finance, we can find hints by analyzing the
economic aspects of the problem. The nature of such hints is well visible in an
example of vanilla options (we consider these options in variables (t, s) leaving to
the reader the task of translating the obtained artificial boundary conditions into
the variables used in (5.24)). For a call option we have lims→0 V (t, s) = 0 which
has an obvious economic interpretation. For large s we can approximate the option
price by V (t, s) ≈ s(t) − Ke−r(T−t). That approximation is obtained by the
computation of the present value at t of the payoff (s(T )−K) (valid for large s).
For a put option we have lims→0 V (t, s) = Ke−r(T−t), discounted to t payoff K
at T , and the obvious condition lims→∞ V (t, s) = 0.





Chapter 6

Finite difference methods for
parabolic equations

6.1 Introduction to finite differences

Historically, the finite difference method is the first and simplest method for dis-
cretizing partial differential equations. We begin the presentation of this method
with the model problem of the one-dimensional heat conduction

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
= 0.

We will consider the problem in a bounded interval (xmin, xmax) for t ∈ [0, T ].
We divide the interval (xmin, xmax) intoM subintervals and the time interval [0, T ]
into N subintervals and set

δx =
xmax − xmin

M
, δt =

T

N
.

The points

xk := xmin + k · δx, k = 0, 1, . . . ,M, tn := n · δt, n = 0, 1, . . . , N,

are called the grid points (or the mesh points).
We approximate derivatives by finite differences

∂u

∂t
(tn, xk) ≈

u(tn+1, xk)− u(tn, xk)

δt
∂2u

∂x2
(tn, xk) ≈

u(tn, xk+1)− 2u(tn, xk) + u(tn, xk−1)

(δx)2

121
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and denote by wn
k the approximation of u(tn, xk).

We now define several simple difference schemes approximating a solution of
the heat equation.

Euler explicit scheme. In the Euler explicit scheme, we approximate the time
derivative by a forward difference; this gives

wn+1
k − wn

k

δt
−
wn
k+1 − 2wn

k + wn
k−1

(δx)2
= 0.

Thus, the approximation of the heat equation satisfies

wn+1
k = λwn

k+1 + (1− 2λ)wn
k + λwn

k−1,

where λ = δt
(δx)2

.
Introducing the vector

Wn = (wn
1 , w

n
2 , . . . , w

n
M−1),

(wn
0 and wn

M are omitted as known from the boundary conditions) we can write the
scheme in the matrix form

BWn+1 = AWn + dn,

where B is an identity matrix of dimension (M − 1)× (M − 1) and

A =


1− 2λ λ 0

λ
. . . λ
. . . . . . . . .

0
. . . . . .

 , dn =


λwn

0

0
...
0

λwn
M

 ,

with A of dimension (M − 1)× (M − 1) and dn of dimension M − 1.

Euler implicit scheme. In that scheme, we approximate the time derivative by a
backward difference to obtain

wn+1
k − wn

k

δt
−
wn+1
k+1 − 2wn+1

k + wn+1
k−1

(δx)2
= 0.

Then we get the equation

−λwn+1
k+1 + (1 + 2λ)wn+1

k − λwn+1
k−1 = wn

k ,
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which can be written in the matrix form

BWn+1 = AWn + dn,

where A is an identity matrix of dimension (M − 1)× (M − 1) and

B =


1 + 2λ −λ 0

−λ . . . −λ
. . . . . . . . .

0
. . . . . .

 , dn =


λwn+1

0

0
...
0

λwn+1
M

 ,

where B is (M − 1)× (M − 1)-dimensional and dn, (M − 1)-dimensional.

Crank-Nicolson scheme. That scheme can be considered as a ”linear combina-
tion” of the explicit and implicit Euler schemes

−λ
2
wn+1
k−1 + (1 + λ)wn+1

k − λ

2
wn+1
k+1 =

λ

2
wn
k−1 + (1− λ)wn

k +
λ

2
wn
k+1.

The matrix form of that scheme looks similar to the former two schemes

BWn+1 = AWn + dn,

but with different matrices

B =


1 + λ −λ

2 0

−λ
2

. . . −λ
2

. . . . . . . . .

0
. . . . . .

 , dn =
λ

2


wn
0 + wn+1

0

0
...
0

wn
M + wn+1

M

 ,

A =


1− λ λ

2 0

λ
2

. . . λ
2

. . . . . . . . .

0
. . . . . .

 .

Consider now a generalized one-dimensional parabolic equation (the Black-
Scholes equation (5.21) is of this form)

∂u

∂t
− a2(t, x)

∂2u

∂x2
+ b(t, x)

∂u

∂x
+ c(t, x)u = 0. (6.1)
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To obtain a finite difference approximation of this equation, we approximate the
first-order x derivative by the expression

∂u

∂x
(tn, xk) ≈

u(tn, xk+1)− u(tn, xk−1)

2δx
.

Denoting, as previously, by wn
k the approximation of u(tn, xk) we obtain for the

schemes defined above the matrix equation

Bn+1Wn+1 = AnWn + dn.

Since the coefficients in (6.1) are time-dependent, we obtain different matrices An

and Bn on different time levels. The forms of An, Bn+1 and dn depend on the
scheme used.

For the Euler explicit scheme Bn+1 is an identity matrix and An is tridiagonal
with the elements:

An
k,k = 1− 2λ

(
ank
)2 − δt cnk ,

An
k,k+1 = −γ

2
bnk+1 + λ

(
ank+1

)2
,

An
k,k−1 =

γ

2
bnk−1 + λ

(
ank−1

)2
,

where
λ =

δt

(δx)2
, γ =

δt

δx
.

The vector dn has all zero elements but the first and last

dn1 = λ
(
an0
)2
wn
0 +

γ

2
bn0w

n
0 , dnM−1 = λ

(
anM
)2
wn
M − γ

2
bnMw

n
M .

For the Euler implicit scheme An is an identity matrix and Bn+1 is tridiagonal
with the elements:

Bn+1
k,k = 1 + 2λ

(
an+1
k

)2
+ δt cnk ,

Bn+1
k,k+1 =

γ

2
bn+1
k+1 − λ

(
an+1
k+1

)2
,

Bn+1
k,k−1 = −γ

2
bn+1
k−1 − λ

(
an+1
k−1

)2
.

For the first and the last elements of dn we have

dn1 = λ
(
an+1
0

)2
wn+1
0 +

γ

2
bn+1
0 wn+1

0 ,

dnM−1 = λ
(
an+1
M

)2
wn+1
M − γ

2
bn+1
M wn+1

M .
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For the Crank-Nicolson scheme the corresponding matrices are tridiagonal
with the elements:

Bn+1
k,k = 1 + λ

(
an+1
k

)2
+
δt

2
cnk ,

Bn+1
k,k+1 =

γ

4
bn+1
k+1 −

λ

2

(
an+1
k+1

)2
,

Bn+1
k,k−1 = −γ

4
bn+1
k−1 −

λ

2

(
an+1
k−1

)2
.

An
k,k = 1− λ

(
ank
)2 − δt

2
cnk ,

An
k,k+1 = −γ

4
bnk+1 +

λ

2

(
ank+1

)2
,

An
k,k−1 =

γ

4
bnk−1 +

λ

2

(
ank−1

)2
.

For dn we have

dn1 =
λ

2

((
an0
)2
wn
0 +

(
an+1
0

)2
wn+1
0

)
+
γ

4

(
bn0w

n
0 + bn+1

0 wn+1
0

)
,

dnM−1 =
λ

2

((
anM
)2
wn
M +

(
an+1
M

)2
wn+1
M

)
− γ

4

(
bnMw

n
M + bn+1

M wn+1
M

)
.

6.2 Convergence analysis of two level schemes

We will restrict the analysis of convergence to two-time-level schemes for the linear
parabolic initial-boundary value problem

∂
∂tu+Atu = f, in (0, T ]× U,

u = 0, on [0, T ]× ∂U,

u = g, on {t = 0} × U,

(6.2)

where At is the uniformly parabolic operator of Definition 5.24.
We introduce a grid in U i.e. a discrete set JU of grid points xk indexed by

the vectors k with components ki, i = 1, . . . , d. For U ⊂ Rd the discretization
spacing δxi can depend on the direction xi but all δxi are of the same order h and
we assume that all δxi → 0 with h → 0. The interval [0, T ] is discretized with
points tn, n = 0, 1, . . . N with the time step δt (this time step can be a function of
h as well) such that Nδt = T .
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Let us define the localization operator

Iδt,h: C([0, T ]× U) → R(N+1)×#JU ,

which maps continuous functions to their values at the grid nodes wn
k = w(tn, xk ),

xk ∈ JU , n = 0, 1, . . . , N . For each tn we introduce a grid function Wn = {wn
k }

which is defined in the grid points of JU .
We approximate derivatives in the differential operator At by finite differences

in the x variable and the time derivative by a forward or backward finite difference.
Then we obtain the following finite difference approximation for the differential
problem (6.2)

Ln+1Wn+1 = RnWn + Fn,

where the terms for time level n + 1 are on the left hand side of the equation and
the terms for time level n are on the right hand side, and Fn is the localization
of the nonhomogeneous term f . For the one-dimensional schemes of the previous
section, matrices Ln and Rn straightforwardly correspond to matrices Bn and An

Bn = δtLn, An = δtRn.

DEFINITION. 6.1 The system of equations

Ln+1Wn+1 = RnWn + Fn, n = 0, 1, . . . , N − 1, (6.3)

is called the two-time-level difference scheme for problem (6.2).
The difference scheme (6.3) is said to be solvable if

∥(Ln)−1∥ ≤ Cδt,

where the constant C is independent of n.

The solvability condition means that starting fromW 0 we can compute the grid
function Wn for all subsequent time levels.

If u is a smooth function andWn is a grid function obtained by the localization
of u, then we can expect the convergence Ln+1Wn+1 − RnWn − Fn → ∂u

∂t +
Atu − f , as δt, h → 0. That leads to the notion of consistency of a difference
scheme.

DEFINITION. 6.2 For sufficiently smooth functions φ we define the truncation
error

Ψn(φ) = Ln+1(Iδt,hφ)
n+1 −Rn(Iδt,hφ)

n − Fn −
(
Iδt,h(

∂φ
∂t +Atφ− f)

)n
,

where (Iδt,hφ)
n denotes the localization of φ in the n-th time level.
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It is said that the difference scheme (6.3) is consistent with the differential prob-
lem (6.2) in the norm ∥ · ∥, if

lim
h,δt→0

∥Ψn(φ)∥ → 0 for n = 0, . . . , N − 1.

When there exist constants C(φ), k1, k2 such that

∥Ψn(φ)∥ ≤ C(φ)
(
|h|k1 + |δt|k2

)
,

the scheme is said to have the order of approximation k1 in x and k2 in t.
If the initial-boundary value problem (6.2) possesses a smooth solution then,

to simplify the definition, it is often assumed that φ is just this solution. Then the
truncation error is

Ψn(φ) = Ln+1(Iδt,hφ)
n+1 −Rn(Iδt,hφ)

n − Fn.

DEFINITION. 6.3 The difference scheme (6.3) is said to be stable with respect to
initial conditions in the norm ∥ · ∥, if for any two solutions Wn, V n with the initial
conditionsW 0, V 0, respectively, but with the same right hand side Fn, there exists
a constant C such that

∥Wn − V n∥ ≤ C∥W 0 − V 0∥, nδt ≤ T.

If Rn and Ln are time independent (they are constant in n) then the stability con-
dition for the two-time-level scheme (6.3) can be written as

∥(L−1R)n∥ ≤ C, nδt ≤ T.

It is possible to investigate the stability with respect to the nonhomogeneous
term Fn, but that analysis will be not carried on.

The above defined stability of a difference scheme is in a close relationship to
the well-posedness of the corresponding differential problem.

DEFINITION. 6.4 The problem (6.2) is called well-posed in the norm ∥ · ∥ if

1. There exists a unique solution of problem (6.2) for each initial data g such
that ∥g∥ <∞.

2. There is a constant C such that for any two solutions u1, u2 of problem (6.2)
with data g1, g2, f1, f2, respectively, we have the estimate

∥u1(t)− u2(t)∥ ≤ C
(
∥g1 − g2∥+ sup

τ∈[0,t]
∥f1(τ)− f2(τ)∥

)
for t ≤ T.



128 CHAPTER 6. FINITE DIFFERENCE METHODS

The following theorem explains the connection between consistency, stability,
and convergence of difference schemes for well-posed differential problems.

THEOREM. 6.5 (Lax equivalence theorem) If the problem (6.2) is linear, well-
posed, and its discrete approximation is solvable and consistent, then a solution
of the difference scheme (6.3) converges to a solution of (6.2) if and only if the
difference scheme (6.3) is stable.

Thus, if Wn is a solution of (6.3) for a given grid JU and a time discretization
with step δt and u is a solution of (6.2), then

∥Wn − (Iδt,hu)
n∥ → 0 for h, δt→ 0, nδt→ t, t ≤ T.

When the scheme has the order of approximation k1 in x and k2 in t, then there is
a constant C such that

∥Wn − (Iδt,hu)
n∥ ≤ C

(
|h|k1 + |δt|k2

)
.

Proof. W are going to prove only that consistency and stability imply convergence.
We assume that the operators Ln and Rn are time independent. Hence, these op-
erators are constant in n and this superscript will be omitted. To simplify notation
we write un instead of (Iδt,hu)n.

Assume that u is a smooth solution of (6.2) and consider the difference Wn −
un. Then we have

L(Wn+1 − un+1) = R(Wn − un)−Ψn,

where Ψn is the truncation error. Thus, we obtain

Wn+1 − un+1 = L−1R(Wn − un)− L−1Ψn,

and iterating

Wn+1 − un+1 = −
(
L−1Ψn + L−1RL−1Ψn−1 + · · ·+

(
L−1R

)n
L−1Ψ0

)
.

By the stability and solvability conditions, we have the inequality

∥
(
L−1R

)k
L−1∥ ≤ Cδt,

which gives the estimate

∥Wn − un∥ ≤ Cδt
n−1∑
i=0

∥Ψi∥.
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If the scheme is consistent then

δt

n−1∑
i=0

∥Ψi∥ ≤ Nδt max
0≤i≤N−1

∥Ψi∥ → 0 as h, δt→ 0,

which completes the proof.
Assume now that u is not smooth. For smooth initial values g̃ and nonhomoge-

neous terms f̃ we obtain smooth solutions of (6.2) by Theorem 5.29 and Remark
5.3. Let g̃ ∈ C∞(U) and f̃ ∈ C∞(UT ) be such that (g̃ and f̃ exist due to Theorem
5.6)

∥g − g̃∥+ sup
t∈[0,T ]

∥f(t)− f̃(t)∥ ≤ ϵ.

Let now ũ be a smooth solution of (6.2) with the above g̃ and f̃ . By the well-
posedness of (6.2), we get

∥u(t)− ũ(t)∥ ≤ C(t)
(
∥g − g̃∥+ sup

τ∈[0,t]
∥f(τ)− f̃(τ)∥

)
≤ ϵC.

Taking W̃n a solution of the difference scheme (6.3) corresponding to ũ, we obtain
the convergence

∥Wn − un∥ = ∥Wn − W̃n + W̃n − ũn + ũn − un∥

≤ ∥Wn − W̃n∥+ ∥W̃n − ũn∥+ ∥ũn − un∥ → 0, for h, δt→ 0,

where ∥Wn − W̃n∥ → 0 follows from the stability of (6.3), ∥W̃n − ũn∥ → 0,
from the consistency, and ∥ũn − un∥ → 0 from the well-posedness of (6.2).

6.3 θ-schemes

Let us consider a one-dimensional version of problem (6.2). Since now U is an
open interval, without loss of generality we can assume U = (0, 1). Then (6.2) is
replaced by

∂
∂tu+Atu = f, (t, x) ∈ (0, T ]× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

u(0, x) = g(x), x ∈ (0, 1).

(6.4)

Assume that the coefficients of At and the nonhomogeneous term f in (6.4) are t
independent. Then we can drop the superscript t from At and write

Au = −a2(x)∂2u
∂x2 + b(x)∂u∂x + c(x)u.
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Thus the Euler explicit and implicit schemes and the Crank-Nicolson scheme can
be written by a single formula, the so-called θ-scheme

(I + θA)Wn+1 =
(
I − (1− θ)A

)
Wn + ϕ, (6.5)

where

Ak,k = 2λa2k+δt ck, Ak,k+1 =
γ

2
bk+1−λa2k+1, Ak,k−1 = −γ

2
bk−1−λa2k−1,

when, as previously, we denote

λ =
δt

(δx)2
, γ =

δt

δx
,

and ϕ is a localization of f .
To estimate the order of approximation for the θ-schemes we will use the fol-

lowing lemma.

LEMMA. 6.6 Let z ∈ C4(J), J ⊂⊂ R. Then

z(x+ h)− 2z(x) + z(x− h)

h2
= z′′(x) +

h2

12
z(4)(x) +O(h3),

z(x+ h)− z(x− h)

2h
= z′(x) +

h2

6
z(3)(x) +O(h4),

z(x+ h)− z(x)

h
= z′(x) +

h

2
z′′(x) +O(h2).

The proof of this lemma follows easily from the Taylor expansion.

THEOREM. 6.7 The θ-scheme for the one-dimensional, linear, parabolic prob-
lem (6.4) has the order of approximation

O
(
(θ − 1

2)δt
)
+O

(
|δx|2 + |δt|2

)
.

Proof. We prove the theorem under the assumption of constant coefficients.
Let ynk be a function on the grid, i.e., ynk = y(tn, xk). Let y denote the vector

{ynk}Mk=0 and ŷ, the vector {yn+1
k }Mk=0. We will also use the abbreviation y∆ =

ŷ−y
δt .

Introduce the grid difference operator

Λy = −a2S
+y − 2y + S−y

(δx)2
+ b

S+y − S−y

2δx
+ cy,
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where S+ and S− denote shift operators S±{ynk} = {ynk±1}. Then the θ-scheme
for (6.4) has the form

y∆ + Λ
(
θŷ + (1− θ)y

)
= ϕ,

where ϕ is a localization of f .
Consider the solution u of (6.4) which is of class C2,4

(
(0, T )× (0, 1)

)
. Since

we are going to consider the action of a finite difference operator on functions of
continuous variables, we introduce the following notation:

u = u(τ, ξ), the localization of u at a fixed point (τ, ξ),

ut =
∂u

∂t
(τ, ξ), ux =

∂u

∂x
(τ, ξ),

û = u(τ + δt, ξ), ū = u(τ + 1
2
δt, ξ), u∆ =

û− u

δt
.

Since u is a solution of (6.4) then by Definition 6.2 the truncation error ψ is
given by the expression

ψ = u∆ + Λ
(
θû+ (1− θ)u

)
− ϕ,

and is only a function of u. By Lemma 6.6 we get

Λu = −a2uxx − a2
(δx)2

12
uxxxx +O((δx)3) + bux + b

(δx)2

6
uxxx +O((δx)4)

+ cu = Au+
(δx)2

12
Auxx +O((δx)2).

To estimate the truncation error let us note the identities which follow from the
definition of u∆

û =
1

2
(û+ u) +

1

2
(û− u) =

1

2
(û+ u) +

1

2
δt u∆,

u =
1

2
(û+ u)− 1

2
(û− u) =

1

2
(û+ u)− 1

2
δt u∆,

θû+ (1− θ)u =
1

2
(û+ u) + (θ − 1/2)δt u∆.

Thus

ψ = u∆ +
1

2
Λ(û+ u) + (θ − 1/2)δtΛu∆ − ϕ. (6.6)
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By Taylor’s expansion we get

û = ū+
1

2
δt ūt +

(δt)2

8
ūtt +O((δt)3),

u = ū− 1

2
δt ūt +

(δt)2

8
ūtt +O((δt)3),

1

2
(û+ u) = ū+

(δt)2

8
ūtt +O((δt)3).

Then comparing

u =
1

2
(û+ u)− 1

2
δt u∆ = ū+

(δt)2

8
ūtt −

1

2
δt u∆ +O((δt)3)

with

u = ū− 1

2
δt ūt +

(δt)2

8
ūtt +O((δt)3)

we obtain
u∆ = ūt +O((δt)2).

Inserting into (6.6) the above expression for u∆ and the expression for 1
2
(û + u)

gives

ψ = ūt +Aū+
(δx)2

12
Aūxx + (θ − 1/2)δtAūt

+
(δx)2

12
(θ − 1/2)δtAūtxx +O((δx)2 + (δt)2)− ϕ.

We have ūt+Aū = f̄ due to (6.4). Assuming the equality f̄ = ϕ (f is independent
of t and the localization of f is correctly chosen) we have

ψ = (θ − 1/2)δtAūt +O((δx)2 + (δt)2).

6.4 Stability of difference schemes

We will now analyze the stability of two-time-level difference schemes for the
linear, parabolic problem (6.2). To simplify the presentation we assume that the
coefficients of (6.2) are time independent and restrict our analysis to the stability
with respect to initial data. Let Un and V n be two solutions of scheme (6.3) with
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initial conditions U0 and V 0, respectively. Put Wn = Un − V n. To prove that a
scheme is stable in the norm ∥ · ∥ we have to prove the following implication

LWn+1 = RWn =⇒ ∥Wn∥ ≤ C∥W 0∥, nδt ≤ T,

where Wn fulfills zero boundary conditions.
The constant C is independent of n but generally depends on T and with in-

creasing T can lead to an exponential growth of the numerical solution. Only when
C ≤ 1 there is no growth, and the solution is bounded by a universal constant for
any T .

For parabolic problems, due to a maximum principle, it is very natural to prove
stability in the l∞ norm. The following theorem is a simple example.

THEOREM. 6.8 The θ-schemes for the heat equation (a2 = 1, b = 0, c = 0,
f = 0) with 0 ≤ θ ≤ 1 and θ ≥ 1− 1

2λ yield solutions satisfying

|Wn+1|∞ ≤ |Wn|∞,

where |Wn|∞ = max0≤k≤M |wn
k | is the l∞ norm in RM+1.

That proves the stability

|Wn|∞ ≤ |W 0|∞

with the constant C = 1.

Proof. The θ-scheme for the heat equation reads

wn+1
k − wn

k

δt
= θ

wn+1
k+1 − 2wn+1

k + wn+1
k−1

(δx)2
+ (1− θ)

wn
k+1 − 2wn

k + wn
k−1

(δx)2
.

We rewrite this equation in the form

(1 + 2θλ)wn+1
k = θλ(wn+1

k−1 + wn+1
k+1 ) + (1− θ)λ(wn

k−1 + wn
k+1)

+
(
1− 2(1− θ)λ

)
wn
k .

Under the hypothesis of the theorem, all the coefficients on the right hand side are
nonnegative. Hence

(1+2θλ)|Wn+1|∞ ≤ 2θλ|Wn+1|∞+2(1−θ)λ|Wn|∞+
(
1−2(1−θ)λ

)
|Wn|∞.

The rearrangement of terms in the inequality completes the proof.

A maximum principle for parabolic equations can help establish stability in the
supremum norm. But there are numerical schemes that do not satisfy a discrete
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maximum principle. It appears that a more convenient is the stability analysis in
the l2 norm. In addition, in the l2 setting, we can use Fourier’s analysis which
is particularly suitable for constant-coefficient problems. Before passing to the
stability analysis of two-time-level schemes let us recall some facts from linear
algebra.

LEMMA. 6.9 Let A be a symmetric matrix in RM . Then

ρ(A) = ∥A∥,

where ∥A∥ denotes the operator norm of A implied by the Euclidean norm in RM

and ρ(A) denotes the spectral radius of A

ρ(A) = max
µ∈σ(A)

|µ|,

where σ(A) is the spectrum of A, the set of all eigenvalues of A.
For nonsymmetric matrices in RM , we have only the inequality

ρ(A) ≤ ∥A∥.

LEMMA. 6.10 Let A be the matrix defined for the θ-scheme (6.5) implied by the
operator A with constant coefficients. The components of A are

Ak,k = 2λa2 + δt c, Ak,k+1 =
γ

2
b− λa2, Ak,k−1 = −γ

2
b− λa2.

Then for γb ̸= 2λa2 the eigenproblem

Ar(j) = µjr
(j)

has the eigenvalues

µj = δt c+ 2λa2 −
√
4λ2a4 − γ2b2 cos

jπ

M
, j = 1, . . . ,M − 1,

and the eigenvectors

r(j) =

((2λa2 + γb

2λa2 − γb

) 1
2
sin

jπ

M
, . . . ,

(2λa2 + γb

2λa2 − γb

) 1
2
sin

(M − 1)jπ

M

)
.

We now restrict problem (6.2) to a constant-coefficient problem. Then in the l2

setting, we have the following stability result for the θ-schemes.
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THEOREM. 6.11 Let A be the matrix defined in Lemma 6.10. Assume that the
eigenvalues of the symmetric part of this matrix, obtained by putting b = 0, are
positive which corresponds to the inequality

c > − 4a2

(δx)2
sin2

π

2M
≈ −a2π2, (6.7)

where we have substituted δxM = 1, the size of the spatial domain U = (0, 1).
If A is symmetric (b = 0) then the θ-scheme

(I + θA)Wn+1 = (I − (1− θ)A)Wn

is stable in l2-norm for

θ ≥ 1

2
− 1

4λa2 + δt c
.

For the nonsymmetric matrix A (with b ̸= 0) the θ-scheme is stable if (6.7)
holds and θ ≥ 1/2.

Proof. Taking into account equation (6.5) defining θ-schemes a sufficient condition
for stability is ∥∥(I + θA)−1

(
I − (1− θ)A

)∥∥ ≤ 1.

Since(
I − (1− θ)A

)
= I + θA− 1

θ
(I + θA) +

1

θ
I =

(
1− 1

θ

)
(I + θA) +

1

θ
I,

we have

(I + θA)−1
(
I − (1− θ)A

)
=

(
1− 1

θ

)
I +

1

θ
(I + θA)−1.

Assume A is symmetric. Then also (I + θA)−1 is symmetric, and the norm of(
1− 1

θ

)
I +

1

θ
(I + θA)−1

is equal to its spectral radius. Then the estimate we are looking for can be reduced
to

max
µj

∣∣∣∣(1− 1

θ

)
+

1

θ(1 + θµj)

∣∣∣∣ ≤ 1,

where µj are the eigenvalues of A.
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By Lemma 6.10 we have

µj = δt c+ 2λa2 − 2λa2 cos
jπ

M
= δt c+ 4λa2 sin2

jπ

2M
, j = 1, . . . ,M − 1.

The condition (
1− 1

θ

)
+

1

θ(1 + θµj)
≤ 1

gives

θ − 1 +
1

1 + θµj
≤ θ ⇒ θµj ≥ 0 ⇒ µj ≥ 0,

which is (6.7).
The condition (

1− 1

θ

)
+

1

θ(1 + θµj)
≥ −1

gives

θ − 1 +
1

1 + θµj
≥ −θ ⇒ −1 +

1

1 + θµj
≥ −2θ

⇒ µj
1 + θµj

≤ 2 ⇒ θ ≥ 1

2
− 1

µj
.

Taking into account the values of µj given by Lemma 6.10, we obtain

max
j

(
− 1

µj

)
= − 1

maxj µj
≤ − 1

δt c+ 4λa2
.

Hence, if (6.7) holds and

θ ≥ 1

2
− 1

δt c+ 4λa2

the spectral radius is not greater than 1.
The stability for the nonsymmetric matrix A (with b ̸= 0) follows from the

estimate

∥∥(I + θA)−1
(
I − (1− θ)A

)∥∥ =

∥∥∥∥(1− 1

θ

)
I +

1

θ
(I + θA)−1

∥∥∥∥ ≤ 1.

TakingW ∈ RM+1 we get (|·|2 and (·, ·) denote the l2 norm and the corresponding



6.4. STABILITY OF DIFFERENCE SCHEMES 137

scalar product in RM+1)

∣∣∣∣((1− 1

θ

)
I +

1

θ
(I + θA)−1

)
W

∣∣∣∣2
2

=
(
1− 1

θ

)2
|W |22 +

1

θ

(
1− 1

θ

)(
W, (I + θA)−1W

)
+

1

θ

(
1− 1

θ

)(
(I + θA)−1W,W

)
+

1

θ2
∣∣(I + θA)−1W

∣∣2
2

=
(1
θ
− 1
)2

|W |22 −
1

θ

(1
θ
− 1
)(

(I + θA)(I + θA)−1W, (I + θA)−1W
)

− 1

θ

(1
θ
− 1
)(

(I + θA)−1W, (I + θA)(I + θA)−1W
)

+
1

θ2
∣∣(I + θA)−1W

∣∣2
2

=
(1
θ
− 1
)2

|W |22 −
1

θ

(1
θ
− 1
)(

(I + θA)−1W, (I + θA)⊤(I + θA)−1W
)

− 1

θ

(1
θ
− 1
)(

(I + θA)−1W, (I + θA)(I + θA)−1W
)

+
1

θ2
∣∣(I + θA)−1W

∣∣2
2

=
(1
θ
− 1
)2

|W |22 +
(2
θ
− 1

θ2

)∣∣(I + θA)−1W
∣∣2
2

−
(1
θ
− 1
)(

(I + θA)−1W, (A+A⊤)(I + θA)−1W
)
.

To complete the proof, we will show that the last expression is bounded by |W |22.
This proof is in several steps. First, we prove that if all eigenvalues of the

symmetric part of A are positive, then (W,AW ) ≥ C|W |22 with C > 0. Let A0

denote the matrix A for a2 = 1, b = 0, c = 0. By simple computations we get

(W,A0W ) = λ

M−1∑
i=0

(wi − wi+1)
2,

where we have used the zero boundary conditions w0 = wM = 0.
On the other hand, expanding W in a series of eigenvectors of A0 and using

the positivity of eigenvalues of A0, we get

(W,A0W ) ≥ min
j
µj |W |22 = 4λ sin2

π

2M
|W |22.
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For the matrix A, we obtain similarly

(W,AW ) = λa2
M−1∑
i=0

(wi − wi+1)
2 + cδt|W |22

≥
(
cδt+ 4λa2 sin2

π

2M

)
|W |22 ≥ C|W |22.

This proves that (W, (I + θA)W ) ≥ C|W |22 with C ≥ 1, which implies that
(I + θA) is invertible and gives∣∣(I + θA)−1W

∣∣2
2
≤ |W |22.

The estimate for (W,AW ) also shows that (A+A⊤) is positive definite and(1
θ
− 1
)(

(I + θA)−1W, (A+A⊤)(I + θA)−1W
)
≥ 0.

Then we get∣∣∣∣((1− 1

θ

)
I +

1

θ
(I + θA)−1

)
W

∣∣∣∣2
2

≤
(1
θ
− 1
)2

|W |22 +
(2
θ
− 1

θ2

)
|W |22 = |W |22

since for θ ≥ 1/2 both coefficients on the right hand side are nonnegative and sum
to 1.

Remark. 6.1 Let us observe that the above theorem gives for the heat equation the
stability condition

θ ≥ 1

2
− 1

4λ
which is much stronger than the l∞ stability condition of Theorem 6.8

θ ≥ 1− 1

2λ
.

We will now carry the stability analysis of problem (6.2) with constant coef-
ficients applying the discrete Fourier transform to the grid functions, which are
solutions of (6.3). To simplify the presentation, we restrict considerations to sta-
bility with respect to initial data. Then we consider only an initial-value problem,
and the domain U of our difference scheme is the whole Rd.

Let δx1 = δx2 = · · · = δxd = 1/M . The grid points of Rd are indexed
by vectors k ∈ Zd with components ki, i = 1, . . . , d. For a function {Wk}k∈Zd

defined on the grid in Rd we introduce the discrete Fourier transform

Ŵ (ξ) =
1

(2π)d/2

∑
k∈Zd

Wke
−i(k ·∆x,ξ)|∆x|,
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where ∆x is the vector with components (δx1, δx2, . . . , δxd), k ·∆x denotes the
vector with components kiδxi and |∆x| =

∏d
i=1 δxi.

The functions Ŵ are defined on the whole Rd and are periodic with period
2πM in the direction of each coordinate. Hence, we can restrict these functions to
the cube [−πM, πM ]d and get the inverse Fourier transform

Wk =
1

(2π)d/2

∫
[−πM,πM ]d

ei(k ·∆x,ξ)Ŵ (ξ)dξ.

We consider the grid functions W as elements of the space l2 with the norm

|W |22 =
∑
k∈Zd

∣∣Wk

∣∣2|∆x|,
Their Fourier transforms Ŵ belong to the space L2([−πM, πM ]d) with the norm

∥Ŵ∥22 =
1

(2π)d

∫
[−πM,πM ]d

∣∣Ŵ (ξ)
∣∣2dξ.

Functions Ŵ (ξ) for a fixed ξ are from the Euclidean space Rd with the Euclidean
norm denoted | · |.

For the discrete Fourier transform holds also the Parseval identity known for
the continuous Fourier transform

∥Ŵ∥2 = |W |2.

Taking the discrete Fourier transform of the difference scheme

LWn+1 = RWn (6.8)

corresponding to the initial-value problem related to (6.2) with constant coefficients
and zero free term, we obtain∑

k

(
LWn+1

)
k
e−i(k ·∆x,ξ) =

∑
k

(
RWn

)
k
e−i(k ·∆x,ξ).

Since (
LWn+1

)
k
=
∑
j

ljW
n+1
k−j ,

(
RWn

)
k
=
∑
j

rjW
n
k−j

equation (6.8) leads to the equation for Fourier’s transforms

L̂(ξ)Ŵn+1(ξ) = R̂(ξ)Ŵn(ξ),
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where
L̂(ξ) =

∑
j

lj e
−i(j ·∆x,ξ), R̂(ξ) =

∑
j

rj e
−i(j ·∆x,ξ).

The matrix
G(ξ) = L̂−1(ξ)R̂(ξ)

is called the amplification matrix and is a continuous function of ξ. Then the equa-
tion for Fourier’s transforms reads

Ŵn(ξ) =
(
G(ξ)

)n
Ŵ 0(ξ).

THEOREM. 6.12 (von Neumann stability condition) A necessary condition for
stability in the norm l2 with respect to initial data for the problem (6.2) with con-
stant coefficients is the existence of a constant K such that the spectral radius of
G(ξ) has the estimate

ρ
(
G(ξ)

)
≤ 1 +Kδt, ∀ξ.

Since the spectral radius of A is the greatest absolute value of the eigenvalues
of A, we can reformulate the above estimate in terms of the eigenvalues of G(ξ)

∀ξ |µj(ξ)| ≤ 1 +Kδt,

where µj(ξ) denotes any eigenvalue of the amplification matrix G(ξ).

Proof. Due to Lemma 6.9 we have the estimate

ρ(An) ≤ ∥An∥ ≤ ∥A∥n,

where ∥A∥ denotes the operator norm of A.
Let us now assume that the necessary condition is not satisfied. Then for each

K there exist a vector ξK and an eigenvalue µ(ξK) of G(ξK) such that |µ(ξK)| >
1 +Kδt. Thus for T = nδt we have

|µ(ξK)|n > 1 +Knδt = 1 +KT ⇒ ∥Gn(ξK)∥ > 1 +KT,

where ∥Gn(ξK)∥ is the operator norm of matrix Gn(ξK) in Rd.
Since Gn(ξ) is a continuous function, there exists an open neighborhood IK

of ξK with a positive volume, where we have the estimate ∥Gn(ξ)∥ > 1 + KT ,
for ξ ∈ IK . We can now select an initial condition W 0

K such that Ŵ 0
K is zero in

the exterior of IK and |Gn(ξ)Ŵ 0
K(ξ)| > (1 +KT )|Ŵ 0

K(ξ)| for ξ ∈ IK . Since the
volume of IK is positive we get the estimate with smaller but still unbounded from
above constant K1

∥GnŴ 0
K∥2 > (1 +K1T )∥Ŵ 0

K∥2.
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By the Parseval identity and the above inequality, we have

sup
W 0

|Wn|2
|W 0|2

= sup
Ŵ 0

∥Ŵn∥2
∥Ŵ 0∥2

≥
∥GnŴ 0

K∥2
∥Ŵ 0

K∥2
> (1 +K1T ),

which contradicts stability, as K1 is arbitrarily large.

COROLLARY. 6.13 The proof of the above theorem shows that the sufficient con-
dition for stability is

sup
ξ

∥Gn(ξ)∥ ≤ C,

for each n such that nδt ≤ T and C > 0 independent of n.

The von Neumann stability condition for an initial value problem is also a nec-
essary condition for stability of an initial-boundary value problem. The extension
of the von Neumann stability analysis to a sufficient condition for initial-boundary
value problems is complicated and is beyond the scope of these lecture notes.

But initial-boundary value problems in a rectangular domain, sayU = (−1, 1)d,
with periodic boundary data, can be easily reduced to the already discussed initial
value problems. Let as previously δx1 = δx2 = · · · = δxd = 1/M . The grid point
of JU are indexed by the vectors

k ∈ ZM = {k = (k1, . . . , kd): ki = 0,±1,±2, . . . ,±M}.

A grid function {Wk}k∈ZM
defined on the discrete grid JU can be expanded in a

series of trigonometric polynomials

Wk =W (k ·∆x) = 1

(2π)d/2

∑′

l∈ZM

Ŵ (ξl )e
−i(k ·∆x,ξl ), where ξl = lπ,

where the prime in the summation sign indicates that the summation has to be
modified for li = ±M to take into account the periodicity of boundary conditions.

The coefficients Ŵ (ξl ) are defined by the finite Fourier transform

Ŵ (ξl ) =
1

(2π)d/2

∑′

k∈ZM

Wke
−i(k ·∆x,ξl )|∆x|, for ξl = lπ.

Functions Ŵ belong to the space l2 with the norm

|Ŵ |22 =
∑′

l∈ZM

|Ŵ (ξl )|2,
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whereas functions W belong to the space l2 with the norm

|W |22 =
∑′

k∈ZM

|Wk |2|∆x|.

With the above norms we have the Parseval identity |W |2 = |Ŵ |2. Similarly like
for initial value problems we can define the amplification matrix G = G(ξl ) which
is now defined for a discrete set of points ξl . For this amplification matrix the von
Neumann stability condition (Theorem 6.12 and Corollary 6.13) remains valid but
the proof of Theorem 6.12 requires some modifications.
Proof of Theorem 6.12 (for the finite Fourier transform). Since Gn is an operator
of multiplication by a matrix, we can compute its norm by applying a well-known
property of operators of multiplication. If B is an operator of multiplication by
a function b(x) in spaces L2 (or l2), then the operator norm of B is given by the
formula

∥B∥ = sup
u∈L2

(∫
|b(x)u(x)|2dx

) 1
2

(∫
|u(x)|2dx

) 1
2

= sup
x

|b(x)|.

By the Parseval identity and the above property of multiplication operators, we
have

sup
W 0

|Wn|2
|W 0|2

= sup
Ŵ 0

|Ŵn|2
|Ŵ 0|2

= sup
Ŵ 0

|GnŴ 0|2
|Ŵ 0|2

= sup
l

∥
(
G(ξl )

)n∥.
Since the stability requirement is the boundedness of Gn(ξl ) for all l ∈ ZM and

∥
(
G(ξl )

)n∥ ≥ ρ
(
Gn(ξl )

)
=
(
ρ
(
G(ξl )

))n
,

then a necessary condition for stability is the existence of a constant K > 1 such
that (

ρ
(
G(ξl )

))n
< K ∀l ∈ ZM .

Taking into account that nδt ≤ T we obtain

ρ
(
G(ξl )

)
≤ Kδt/T ≤ 1 +K1δt ∀l ∈ ZM ,

which completes the proof.

It can be shown that if G is a normal matrix, then its operator norm is equal to
its spectral radius. Then the von Neumann condition is also sufficient, in particular,
it is sufficient for one-dimensional problems. It appears, however, that even when
the condition is sufficient the constant in the condition can lead to the rapid growth
of a grid solution. The following example illustrates the problem.
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Example. 6.14 Consider the convection-diffusion equation

∂u
∂t + b∂u∂x = a2 ∂

2u
∂x2 .

Applying to the Euler explicit scheme

wn+1
k − wn

k

δt
+ b

wn
k+1 − wn

k−1

2δx
= a2

wn
k+1 − 2wn

k + wn
k−1

(δx)2

the discrete Fourier transform, we obtain the amplification function (d = 1, hence
G is one-dimensional)

G(ξ) = 1− 2κ+ (κ+ ν/2)e−iδx ξ + (κ− ν/2)eiδx ξ,

where κ = a2 δt
(δx)2

, ν = b δtδx . Denoting s = sin(δx ξ/2) we get

G(ξ) = 1− 2κ+ 2κ cos(δx ξ)− iν sin(δx ξ),

|G(ξ)|2 = (1− 4κs2)2 + 4ν2s2(1− s2).

Taking s2 = 1 we obtain |G| ≤ 1 for κ ≤ 1
2
, which is the necessary condition

for stability. As ν2 = b2
(

δt
δx

)2
= (b2/a2)κδt and maxs2∈[0,1] s

2(1 − s2) = 1
4 we

get for κ ≤ 1
2

the estimate

|G(ξ)|2 = (1−4κs2)2+4ν2s2(1−s2) ≤ 1+4ν2s2(1−s2) ≤ 1+ν2 ≤ 1+
b2

2a2
δt,

so that the von Neumann condition is satisfied and, since the problem is one-
dimensional, the condition is sufficient for stability. On the other hand, taking
ν = 1, κ = 1

4 and s2 = 1
2 , we obtain |G|2 = 5

4 , which gives a rapid growth of
Fourier’s modes.

The above example suggests the introduction of a stronger notion of stability.

DEFINITION. 6.15 A two-time-level difference scheme is said to be strongly sta-
ble in the norm l2 with respect to initial conditions if the following estimate holds
for the amplification matrix

∀ξ ∥G(ξ)∥ ≤ 1.

In Example 6.14 the condition |G(ξ)| ≤ 1 gives

ν2 ≤ 2κ ≤ 1. (6.9)
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Indeed, from the expression

|G(ξ)|2 = (1− 4κs2)2 + 4ν2s2(1− s2),

we obtain for s2 = 1 the estimate 2κ ≤ 1. Rewriting |G(ξ)|2 as

|G(ξ)|2 = 1− 4s2(2κ− ν2) + 4s4(4κ2 − ν2)

we obtain |G(ξ)| ≤ 1 provided that

4s4(4κ2 − ν2) ≤ 4s2(2κ− ν2).

Thus for s2 > 0 we get

s2(4κ2 − ν2) ≤ (2κ− ν2).

Excluding the case 2κ = ν2 = 1 and taking the limit s2 → 0 we obtain from
the above inequality 2κ − ν2 ≥ 0. Since the excluded case falls into the general
inequality, it proves (6.9).

Number ν
κ is called the Peclet mesh number and relates the convection term b∂u∂x

to the diffusion term a2 ∂
2u

∂x2 . The condition ν2

κ ≤ 2 means that the convection term
cannot be too large with respect to the diffusion term. The maximal admissible
κ = 1

2
restricts the Peclet mesh number ν

κ ≤ 2 which implies δx ≤ 2a2

b . The
violation of this restriction of the grid step can generate spurious oscillations of the
scheme.

We can improve the stability by taking an upwind scheme, which applies a
different approximation of the first-order x derivative. Let us consider the equation
of Example 6.14

∂u
∂t + b∂u∂x = a2 ∂

2u
∂x2 .

If b > 0 the left hand side of the equation is a first-order operator with the traveling
wave solution u(t, x) = F (x − bt), where F (·) = g(·) is given by the initial
condition. We can say that the profile F (·) drifts in the positive x direction (”wind
blows to the right”). Looking from the node (k, n) the node (k−1, n) is ”upwind”.
Applying that approximation of the first-order derivative we obtain for the Euler
explicit scheme

wn+1
k − wn

k

δt
+ b

wn
k − wn

k−1

δx
= a2

wn
k+1 − 2wn

k + wn
k−1

(δx)2

the amplification function

G(ξ) = 1− 2κ− ν + (κ+ ν)e−iδx ξ + κeiδx ξ.



6.5. BLACK-SCHOLES EQUATION IN ORIGINAL VARIABLES 145

After simplifications we get

G(ξ) = 1− 2κ− ν + 2κ cos(δx ξ) + ν cos(δx ξ)− iν sin(δx ξ),

|G(ξ)|2 = (1− 2(2κ+ ν)s2)2 + 4ν2s2(1− s2).

The condition of strong stability |G(ξ)| ≤ 1 gives the inequality

2κ+ ν ≤ 1. (6.10)

To prove that inequality, observe that condition |G(ξ)|2 ≤ 1 gives 2κ+ ν ≤ 1 for
s2 = 1. Since 0 < ν2 ≤ ν ≤ 2κ+ ν for b > 0, then for 2κ+ ν ≤ 1 and arbitrary
s2 ∈ [0, 1] we have

|G(ξ)|2 = (1− 2(2κ+ ν)s2)2 + 4ν2s2(1− s2)

≤ (1− 2(2κ+ ν)s2)2 + 4(2κ+ ν)s2(1− s2)

= 1 + 4s4(2κ+ ν)(2κ+ ν − 1) ≤ 1,

so the condition of strong stability holds.
Inequality (6.10) is called the CFL condition (Courant, Friedrichs and Lewy

[12]) and for small κ is less restrictive than (6.9). For example, taking κ = 1
50 we

obtain from inequality (6.10) ν ≤ 0.96 and ν2

κ ≈ 46, a value much larger than
ν2

κ ≤ 2 permitted by inequality (6.9).

Remark. 6.2 The von Neumann stability condition applies only to constant-coeffi-
cient equations where the Fourier transform is well defined. Nevertheless, the von
Neumann analysis is also used for variable-coefficient equations ”freezing” coeffi-
cients in their constant values. Since stability is a local property ”freezing” works
well for many variable-coefficient equations.

6.5 The Black-Scholes equation in the original variables

We return now to the Black-Scholes equation in a general setting of variable coef-
ficients

∂V (t, s)

∂t
− 1

2
σ2(t, s)s2

∂2V (t, s)

∂s2
− r(t)s

∂V (t, s)

∂s
+ r(t)V (t, s) = 0, (6.11)

with the initial condition
V (0, s) = V0(s).
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Ignoring the unboundedness of the coefficients we write the θ-scheme for that
equation

(I + θAn+1)Wn+1 =
(
I − (1− θ)An

)
Wn, (6.12)

where

An
k,k = (kσnk )

2+rn, An
k,k+1 = −1

2

(
(kσnk )

2+krn
)
, Ak,k−1 = −1

2

(
(kσnk )

2−krn
)
.

Numerical experiments show that the scheme is unconditionally convergent for θ ≥
1/2, i.e., for the Euler implicit and the Crank-Nicolson schemes, independently
from the fact that the coefficients are unbounded

Explanation

For (6.11) we can carry on a similar analysis as for problem (5.11). In particu-
lar, using similar methods, we can prove the existence of weak solutions to (6.11).
We have only to replace the space H1

0 (U) by the space

V = {u ∈ L2(R+): x
du

dx
∈ L2(R+)}

with the norm
∥u∥V =

∥∥∥xdu
dx

∥∥∥
L2(R+)

,

where the derivative du
dx is understood in a weak sense.

DEFINITION. 6.16 V (t, x) such that V ∈ C([0, T ];L2(R+))∩L2(0, T ;V) and
dV
dt ∈ L2(0, T ;V ′), where V ′ is the dual space to V , is called the weak solution of

the Black-Scholes equation (6.11), if for each u ∈ V(
∂V
∂t (t, ·), u

)
+Bt[V (t, ·), u] = 0, t ∈ (0, T ],

V (0, ·) = V0, on R+,
(6.13)

where

Bt[v, u] =

∫
R+

1

2
s2σ2(t, s)

∂v

∂s

∂u

∂s
ds

+

∫
R+

(
−r(t) + σ2(t, s) + sσ(t, s)

∂σ

∂s

)
s
∂v

∂s
uds+ r(t)

∫
R+

vuds.

An energy estimate is crucial for the existence of weak solutions. In the case
of the Black-Scholes equation (6.11), we have the following energy estimate.
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THEOREM. 6.17 (Energy estimate for (6.11)) Assume

1. 0 < σL ≤ σ(t, s) ≤ σU , where σL and σU are constants.

2. There is a constant Cσ such that∣∣∣s∂σ
∂s

∣∣∣ ≤ Cσ, ∀t ∈ [0, T ], ∀s ∈ R+.

Then

∃α > 0, |Bt[v, u]| ≤ α∥v∥V∥u∥V ,

∃γ > 0,
σ2L
4
∥v∥2V ≤ Bt[v, v] + γ∥v∥2L2(R+).

The proof of this energy estimate is similar to the proof of Theorem 5.20 if we use
the Rd version of Poincaré’s inequality

∀v ∈ V, ∥v∥L2(R+) ≤ 2
∥∥∥xdv
dx

∥∥∥
L2(R+)

,

which can be obtained from the integral identity

2

∫
R+

xv(x)
dv

dx
dx = −

∫
R+

v2(x)dx.

By the above energy estimate, we obtain the following existence theorem.

THEOREM. 6.18 If V0 ∈ L2(R+) and assumptions 1. and 2. of Theorem 6.17
are fulfilled, then there exists a unique weak solution of problem (6.13) and for
each t, 0 < t ≤ T , we have the estimate

e−2γt∥V (t, ·)∥2L2(R+) +
1

2
σ2L

∫ t

0
e−2γτ∥V (τ, ·)∥2Vdτ ≤ ∥V0∥2L2(R+),

where γ is the constant from Theorem 6.17.

The estimate of Theorem 6.18 explains why despite unbounded coefficients the
scheme (6.12) possesses good numerical properties.
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6.6 Finite differences in many dimensions

Generalizations of the one-dimensional methods

We are going to extend the one-dimensional finite difference schemes, we have
been studying, to many dimensions. Before we proceed, we would like to empha-
size that the approach we will use is the same as in the case of the one-dimensional
schemes. The concepts of consistency, stability, and convergence remain valid as
they have been formulated for multi-dimensional finite differences. Our basic tools
will be the Lax equivalence theorem (Theorem 6.5) and the von Neumann analysis
of stability.

We begin with the Dirichlet problem for the two-dimensional heat equation in
the rectangular domain U = [0, 1]2

∂u

∂t
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0, (t, x, y) ∈ (0, T ]× U,

u(t, x, y) = q(t, x, y), (x, y) ∈ ∂U, t ∈ [0, T ],

u(0, x, y) = g(x, y), (x, y) ∈ U.

(6.14)

In the analogy to the one-dimensional approach, we introduce in U a rectangular
grid with spacing δx× δy where

δx =
1

Mx
, δy =

1

My
,

and divide the time interval into N subintervals of length δt = T
N . The grid points

of this mesh are denoted

(xj , yk) =(j · δx, k · δy), j = 0, . . . ,Mx, k = 0, . . . ,My,

tn = n · δt, n = 0, . . . , N.

The time derivative in the heat equation is approximated by the forward differ-
ence

∂u(tn, xj , yk)

∂t
≈ u(tn+1, xj , yk)− u(tn, xj , yk)

δt
,

and the second-order space derivatives are approximated by the central differences

∂2u(tn, xj , yk)

∂x2
≈ u(tn, xj+1, yk)− 2u(tn, xj , yk) + u(tn, xj−1, yk)

(δx)2
,

∂2u(tn, xj , yk)

∂y2
≈ u(tn, xj , yk+1)− 2u(tn, xj , yk) + u(tn, xj , yk−1)

(δy)2
.
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We denote by wn
j,k the approximation of u(tn, xj , yk). To simplify the nota-

tion, we define several finite difference operators. We begin with the first-order
difference operator

δxw
n
j,k =

wn
j+ 1

2
,k
− wn

j− 1
2
,k

δx
.

Since points xj ± 1
2δx are not grid points we use in fact the central differences

δxw
n
j,k =

wn
j+1,k − wn

j−1,k

2δx
.

That leads to the following second-order difference operator

δxxw
n
j,k =

wn
j+1,k − 2wn

j,k + wn
j−1,k

(δx)2
.

Analogously, we define the operators δy and δyy.
We begin with the two-dimensional explicit Euler scheme

wn+1
j,k − wn

j,k

δt
− a2(δxx + δyy)w

n
j,k = 0.

Solving for wn+1
j,k we obtain

wn+1
j,k =a2λx

(
wn
j−1,k + wn

j+1,k

)
+ a2λy

(
wn
j,k−1 + wn

j,k+1

)
+ (1− 2a2λx − 2a2λy)w

n
j,k,

where
λx =

δt

(δx)2
, λy =

δt

(δy)2
.

By the above equation we can compute wn+1
j,k at all internal points (xj , yk), j =

1, . . . ,Mx − 1, k = 1, . . . ,My − 1.
The boundary conditions

wn+1
j,k = g0(tn+1, xj , yk),

for (j, k) ∈ {0,Mx} × {0, . . . ,My} ∪ {0, . . . ,Mx} × {0,My}

supplement the solution on ∂U .
The truncation error of the scheme is O(δt) + O

(
|δx|2 + |δy|2

)
and can be

computed similarly like in the proof of Theorem 6.7. Performing the von Neumann
stability analysis we obtain the following amplification function

G(ξx, ξy) = 1 + a2λx
(
e−iξx − 2 + eiξx

)
+ a2λy

(
e−iξy − 2 + eiξy

)
= 1− 4a2λx sin

2 ξx
2

− 4a2λy sin
2 ξy
2
.
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The maximum of G occurs at (0, 0) and is equal 1 and the minimum, at (π, π) and
is equal 1− 4a2(λx + λy). Thus |G(ξx, ξy)| ≤ 1 if

1− 4a2(λx + λy) ≥ −1 =⇒ λx + λy ≤ 1

2a2
.

Hence, we have obtained a numerical method easy to implement and with a
low computational complexity but with a restrictive stability condition. That is not
a surprise as we have used an explicit scheme.

To improve the stability, we apply the Crank-Nicolson scheme

wn+1
j,k − wn

j,k

δt
− a2

2
(δxx + δyy)

(
wn+1
j,k + wn

j,k

)
= 0.

Solving for wn+1
j,k we obtain(

1− δt

2
a2(δxx + δyy)

)
wn+1
j,k =

(
1 +

δt

2
a2(δxx + δyy)

)
wn
j,k.

Introducing the matrix

Wn =
(
wn
j,k

)
, j = 1, . . . ,Mx − 1, k = 1, . . . ,My − 1

we can write the above equation as(
I − 1

2
C
)
Wn+1 =

(
I +

1

2
C
)
Wn

where C is a (My − 1)× (My − 1) tridiagonal block matrix

C =


Dx Dy

Dy Dx Dy

. . . . . .
Dy Dx


with the matrix entries of dimension (Mx − 1)× (Mx − 1)

Dx =


α β
β α β

. . . . . .
β α

 , Dy = λya
2I,

where
α = −2a2

(
λx + λy

)
, β = λxa

2.
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The truncation error of the scheme is O
(
|δt|2 + |δx|2 + |δy|2

)
which can be

computed like in Theorem 6.7. The von Neumann stability analysis gives

(
1+2a2λx sin

2 ξx
2

+ 2a2λy sin
2 ξy
2

)
G(ξx, ξy)

=
(
1− 2a2λx sin

2 ξx
2

− 2a2λy sin
2 ξy
2

)
.

Since
∣∣∣1−z
1+z

∣∣∣ ≤ 1 for all z ≥ 0 then |G(ξx, ξy)| ≤ 1 and the scheme is uncondition-
ally stable.

Thus we have obtained a scheme with good approximation and stability prop-
erties but very costly in implementation. In each time step we have to solve a linear
system of (Mx − 1)× (My − 1) equations. Since the system is not tridiagonal its
solution is very expensive. The fact that the system is block-tridiagonal can reduce
the cost, but this reduction is minor.

Alternating direction method

A significant reduction of computational complexity can be achieved by splitting
the two-dimensional problem into a sequence of one-dimensional problems. Be-
fore passing to rigorous mathematical considerations, let us describe informally the
idea behind the time-splitting method.

Consider the semi-discrete equation

dW

dt
= ΛW,

where Λ is a discrete matrix representation of a differential operator.
The solution to this equation can be written formally as

W (t) = exp(Λt)W (0).

Assume that Λ can be split into

Λ = Λ1 + Λ2.

We can think about splitting with Λ1 corresponding to x derivatives and Λ2, to y
derivatives, but, in fact, the splitting can be quite general.

We want to apply the above splitting to replace e(Λ1+Λ2)t by eΛ1teΛ2t. These
two operators are equal only if Λ1 and Λ2 commute (Λ1Λ2 = Λ2Λ1). However,
when the time increment is small then also the error generated by substituting
e(Λ1+Λ2)t by eΛ1teΛ2t is small.
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Applying the above splitting to a multi-dimensional finite difference scheme
with the introduced earlier time discretization, we have by Taylor’s expansion

Wn+1 = eδt(Λ1+Λ2)Wn =
(
eδtΛ1eδtΛ2 +

(δt)2

2
(Λ2Λ1−Λ1Λ2)+O

(
(δt)3

))
Wn.

(6.15)
Hence, up to the local error term O(|δt|2) we can replace eδt(Λ1+Λ2) by eδtΛ1eδtΛ2 .

The idea of operator splitting is the basis of a very powerful method that is es-
pecially used for solving parabolic equations. This method is called the alternating
direction implicit (ADI) method. We will present various ADI algorithms for the
already introduced Dirichlet problem for the two-dimensional heat equation.

Peaceman-Rachford scheme. This scheme is obtained by splitting the Crank-
Nicolson scheme(

1− δt

2
a2(δxx + δyy)

)
wn+1
j,k =

(
1 +

δt

2
a2(δxx + δyy)

)
wn
j,k. (6.16)

Since

1± δt

2
a2δxx ±

δt

2
a2δyy =

(
1± δt

2
a2δxx

)(
1± δt

2
a2δyy

)
− (δt)2

4
a4δxxδyy

we can write (6.16) as(
1− δt

2
a2δxx

)(
1− δt

2
a2δyy

)
wn+1
j,k =

(
1 +

δt

2
a2δxx

)(
1 +

δt

2
a2δyy

)
wn
j,k

+
(δt)2

4
a4δxxδyy

(
wn+1
j,k − wn

j,k

)
.

By the Taylor expansion we have wn+1
j,k = wn

j,k +O(δt). Thus the term

(δt)2

4
a4δxxδyy

(
wn+1
j,k − wn

j,k

)
is of order O

(
|δt|3

)
that is the order of the discretization error.

Neglecting this term as we neglect the discretization error, we arrive at the
scheme(

1− δt

2
a2δxx

)(
1− δt

2
a2δyy

)
wn+1
j,k =

(
1+

δt

2
a2δxx

)(
1+

δt

2
a2δyy

)
wn
j,k. (6.17)

That scheme is up to O
(
|δt|3

)
equivalent to the Crank-Nicolson scheme. In this

scheme, however, the finite differences in the directions of x and y are separated
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and introducing the intermediate level Wn+ 1
2 we get

(
1− δt

2
a2δxx

)
w

n+ 1
2

j,k =
(
1 +

δt

2
a2δyy

)
wn
j,k, (6.18)(

1− δt

2
a2δyy

)
wn+1
j,k =

(
1 +

δt

2
a2δxx

)
w

n+ 1
2

j,k . (6.19)

To find Wn+ 1
2 we have to solve (My − 1) systems of (Mx − 1) equations and

then solve (Mx − 1) systems of (My − 1) equations to compute Wn+1. Each of
these systems is tridiagonal which makes their solution very fast.

We have to supplement the solutions of equations (6.18-6.19) with boundary
conditions. The boundary conditions for (6.19) follow from the Dirichlet boundary
condition for the differential problem (6.14). Deriving the boundary conditions for
equation (6.18) we should have in mind the accuracy of the scheme as it can be
easily destroyed by the wrong choice of boundary data.

Adding the left hand side of (6.19) to the right hand side of (6.18) and solving

for w
n+ 1

2
j,k we get

w
n+ 1

2
j,k =

1

2

(
1− δt

2
a2δyy

)
wn+1
j,k +

1

2

(
1 +

δt

2
a2δyy

)
wn
j,k.

Thus, for the Peaceman-Rachford scheme with Dirichlet boundary conditions, we

should use the following boundary conditions for w
n+ 1

2
j,k

w
n+ 1

2
0,k =

1

2

(
1− δt

2
a2δyy

)
q(tn+1, 0, yk) +

1

2

(
1 +

δt

2
a2δyy

)
q(tn, 0, yk),

w
n+ 1

2
Mx,k

=
1

2

(
1− δt

2
a2δyy

)
q(tn+1, 1, yk) +

1

2

(
1 +

δt

2
a2δyy

)
q(tn, 1, yk).

The boundary conditions for w
n+ 1

2
j,k on the boundaries y = 0 and y = 1 are not

required as these values can be computed from (6.18).
The truncation error for the Peaceman-Rachford scheme is readily calculated

from the unsplit form (6.17). Expanding the terms in equation (6.17) we obtain the
Peaceman-Rachford scheme in the form

wn+1
j,k − wn

j,k

δt
=
1

2
a2δxx

(
wn+1
j,k + wn

j,k

)
+

1

2
a2δyy

(
wn+1
j,k + wn

j,k

)
− δt

4
a4δxxδyy

(
wn+1
j,k − wn

j,k

)
.



154 CHAPTER 6. FINITE DIFFERENCE METHODS

Multiplying this equation by δt and expanding all terms in Taylor’s series we de-
duce that the leading terms are

Ψn(u) ≈ 1

24
(δt)2

∂3u

∂t3
− 1

12
(δx)2

∂4u

∂x4
− 1

12
(δy)2

∂4u

∂y4

− 1

8
(δt)2

∂4u

∂t2∂x2
− 1

8
(δt)2

∂4u

∂t2∂y2
+

1

4
(δt)2

∂5u

∂t∂x2∂y2

= O
(
|δt|2 + |δx|2 + |δy|2

)
.

Hence, the Peaceman-Rachford scheme is second-order accurate in δt, δx, and
δy similarly to the two-dimensional Crank-Nicolson scheme.

To analyze the scheme stability it is more convenient to use the two step version
of the scheme. Applying the discrete Fourier transform to equations (6.18-6.19) we
get (

1 + 2a2λx sin
2 ξx
2

)
Ŵn+ 1

2 =
(
1− 2a2λy sin

2 ξy
2

)
Ŵn,(

1 + 2a2λy sin
2 ξy
2

)
Ŵn+1 =

(
1− 2a2λx sin

2 ξx
2

)
Ŵn+ 1

2 .

From these two equations, we obtain the amplification function

G(ξx, ξy) =

(
1− 2a2λx sin

2 ξx
2

)(
1− 2a2λy sin

2 ξy
2

)
(
1 + 2a2λx sin

2 ξx
2

)(
1 + 2a2λy sin

2 ξy
2

) .
From that expression we see that |G(ξx, ξy)| ≤ 1. Hence, the Peaceman-Rachford
scheme is unconditionally stable. Since we have a consistent, stable scheme, then,
by the Lax equivalence theorem, the scheme is convergent.

Douglas-Rachford scheme. The Douglas-Rachford scheme is obtained by split-
ting the two-dimensional Euler implicit scheme(

1− δt a2(δxx + δyy)
)
wn+1
j,k = wn

j,k. (6.20)

To factor the left hand side of this equation into

(1− δt a2δxx)(1− δt a2δyy)w
n+1
j,k

we have to add to the left hand side of (6.20) the term

(δt)2a4δxxδyyw
n+1
j,k .
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To compensate for this term we add to the right hand side

(δt)2a4δxxδyyw
n
j,k.

We already know from the analysis of the Peaceman-Rachford scheme that the
difference

(δt)2a4δxxδyy
(
wn+1
j,k − wn

j,k

)
(6.21)

is a higher-order term.
Then we obtain the one-step version of the Douglas-Rachford scheme

(1− δt a2δxx)(1− δt a2δyy)w
n+1
j,k =

(
1 + (δt)2a4δxxδyy

)
wn
j,k.

Since this scheme differs from the Euler implicit scheme by the higher-order term
(6.21) the accuracy of the Douglas-Rachford scheme is the same as the Euler im-
plicit scheme, i.e., first-order in δt and second-order in δx and δy.

The splitting form of the Douglas-Rachford scheme is

(1− δt a2δxx)w
∗
j,k = (1 + δt a2δyy)w

n
j,k,

(1− δt a2δyy)w
n+1
j,k = w∗

j,k − δt a2δyyw
n
j,k.

(6.22)

As with the Peaceman-Rachford scheme, we have to select carefully the bound-
ary conditions for W ∗. From (6.22) we find

w∗
j,k = (1− δt a2δyy)w

n+1
j,k + δt a2δyyw

n
j,k.

Thus the boundary conditions for W ∗ at j = 0 and j = Mx can be derived from
the Dirichlet boundary conditions

w∗
0,k = (1− δt a2δyy)q(tn+1, 0, yk) + δt a2δyyq(tn, 0, yk),

w∗
Mx,k = (1− δt a2δyy)q(tn+1, 1, yk) + δt a2δyyq(tn, 1, yk).

We proceed to the stability analysis of the Douglas-Rachford scheme using the
unsplit version of the scheme. Applying the discrete Fourier transform we get(

1 + 4a2λx sin
2 ξx
2

)(
1 + 4a2λy sin

2 ξy
2

)
Ŵn+1

=
(
1 + 16a4λxλy sin

2 ξx
2
sin2

ξy
2

)
Ŵn.

From the above equation, we obtain the amplification function

G(ξx, ξy) =

(
1 + 16a4λxλy sin

2 ξx
2 sin2

ξy
2

)
(
1 + 4a2λx sin

2 ξx
2

)(
1 + 4a2λy sin

2 ξy
2

) .
It is easy to see that 0 ≤ G(ξx, ξy) ≤ 1. Hence, the scheme is unconditionally
stable. As a consistent scheme, it is also convergent.
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Additional topics

Arbitrary domain

We have investigated two-dimensional finite difference schemes in a unit square
to simplify the presentation. Real problems require a domain U complicated in
shape. In setting up difference schemes we can use a regular grid and adopt finite
differences to the irregular boundary of U . An alternative approach is based on
irregular grids better adapted to the boundary. Both of these approaches have some
advantages but also specific difficulties. Below, we present the use of regular grids.
The analysis of irregular meshes is beyond the scope of these lecture notes.

Consider an open, compact domain U ⊂ R2 embedded in a larger rectangular
set DU . A regular mesh JU covers the whole DU . The regularity of JU means
that spacing between grid points on any line parallel to the 0x axis is constant and
equals δx; the same applies to spacing δy along the 0y axis. But the regularity does
not exclude that δx ̸= δy.

The points of JU , which are inside U , are called the interior points. The points
on the intersections of mesh lines with the boundary of U are called the boundary
points. A boundary point can be a point belonging to JU , but in the majority of
cases, it is a point situated between two points in JU . We call the point (xj , yk) ∈
JU regular if it is an interior point and its distance from any boundary point is not
smaller than the grid spacing. The interior points that are closer to some boundary
point are called irregular. For regular points operators δxx and δyy act in the way
defined earlier for U = [0, 1]2. To define these operators for irregular points take
an irregular point (xj , yk) and assume that the irregularity holds in the x direction
only. Then only δxx is changed. We have three cases:

1. If (x∗j−1, yk) is a boundary point, where the star superscript indicates that
the distance between x∗j−1 and xj can be smaller than δx, and (xj+1, yk) is
a regular point then

δxxw
n
j,k

=
1

δx

(
u(tn, xj+1, yk)− u(tn, xj , yk)

δx
−
u(tn, xj , yk)− u(tn, x

∗
j−1, yk)

δx−

)
,

where δx− = |xj − x∗j−1| and obviously δx− ≤ δx.

2. If (x∗j+1, yk) is a boundary point and (xj−1, yk) is a regular point then

δxxw
n
j,k

=
1

δx

(
u(tn, x

∗
j+1, yk)− u(tn, xj , yk)

δx+
− u(tn, xj , yk)− u(tn, xj−1, yk)

δx

)
,



6.6. FINITE DIFFERENCES IN MANY DIMENSIONS 157

where δx+ = |x∗j+1 − xj |.

3. Both points (x∗j+1, yk) and (x∗j−1, yk) are boundary points then

δxxw
n
j,k

=
1

δx

(
u(tn, x

∗
j+1, yk)− u(tn, xj , yk)

δx+
−
u(tn, xj , yk)− u(tn, x

∗
j−1, yk)

δx−

)
.

Similar modifications of δyy are required when (xj , yk) is irregular in the y direc-
tion.

These modifications make the implementation of ADI algorithms more com-
plicated. But the essential advantage of these schemes that we only solve linear
systems with tridiagonal matrices remains valid.

Mixed derivatives

We extend the considerations to the anisotropic diffusion equation with a mixed
second-order derivative

∂u

∂t
− a11

∂2u

∂x2
− 2a12

∂2u

∂x∂y
− a22

∂2u

∂y2
= 0 (6.23)

defined on U = [0, 1]2 with Dirichlet boundary conditions.
The difference schemes we have used for the heat equation will now involve

nine points on each time level to approximate the spatial derivatives. That cause
much greater difficulty compared to the five-point schemes used for the heat equa-
tion. Besides, the use of the ellipticity condition a11a22 > a212 to control the
growth of the terms coming from the approximation of mixed derivatives can be
insufficient, particularly, when the coefficients a11 and a22 are of different magni-
tude. Hence, numerical schemes for such equations require careful design to obtain
accurate and convergent algorithms.

Fortunately, in ADI schemes we can put the approximation of mixed deriva-
tives into the explicit part of the algorithm. We confine the discussion to the
Peaceman-Rachford scheme. For equation (6.23) we have the following extension
of the Peaceman-Rachford scheme(

1− δt

2
a11δxx

)
w

n+ 1
2

j,k =
(
1 +

δt

2
a22δyy + δt a12δxδy

)
wn
j,k,(

1− δt

2
a22δyy

)
wn+1
j,k =

(
1 +

δt

2
a11δxx + δt a12δxδy

)
w

n+ 1
2

j,k .
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Unfortunately, this scheme is only first-order accurate in time. The scheme can be
upgraded to a scheme that is second-order accurate in time by introducing addi-
tional intermediate values

W̃n =
3

2
Wn − 1

2
Wn−1.

The improved scheme is as follows(
1− δt

2
a11δxx

)
w

n+ 1
2

j,k =
(
1 +

δt

2
a22δyy

)
wn
j,k + δt a12δxδyw̃

n
j,k,(

1− δt

2
a22δyy

)
wn+1
j,k =

(
1 +

δt

2
a11δxx

)
w

n+ 1
2

j,k + δt a12δxδyw̃
n
j,k.

The boundary conditions for this scheme can be obtained similarly like for the
original Peaceman-Rachford scheme

w
n+ 1

2
0,k =

1

2

(
1− δt

2
a22δyy

)
q(tn+1, 0, yk) +

1

2

(
1 +

δt

2
a22δyy

)
q(tn, 0, yk),

w
n+ 1

2
Mx,k

=
1

2

(
1− δt

2
a22δyy

)
q(tn+1, 1, yk) +

1

2

(
1 +

δt

2
a22δyy

)
q(tn, 1, yk).

Lower order terms

There is no doubt about where to place first-order derivatives in ADI schemes. The
first-order derivative with respect to x should go with the second-order x deriva-
tive. The same applies to the derivatives with respect to y. As we know from
Section 6.4, the way we approximate the first-order derivatives influences greatly
the scheme stability. The results obtained in that section extend straightforwardly
to ADI schemes. The formulas used for the approximation of first-order deriva-
tives and the placing of the corresponding terms in the implicit or explicit part
of the scheme decide on the accuracy of the scheme. These effects can be easily
investigated by adapting the computations of Section 6.4.

For non-homogeneous equations with a non-homogeneous term f(t, x, y) it is
not always clear where such a term should go in an ADI scheme. Using a wrong
approximation, we can destroy the scheme’s accuracy. The suggested solution is to
start with an integral form of the differential equation (in an analogy with equations
of mathematical physics, that integral form is called the conservation law formu-
lation). Then approximate the integral of f(t, x, y) in a way that preserves the
desired order of accuracy. We are not going into details about these computations.
To illustrate that the good placement of the nonhomogeneous term is not obvious,
we write the Peaceman-Rachford scheme for the equation

∂u

∂t
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
= f(t, x, y).
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The Peaceman-Rachford scheme which preserves the second-order accuracy is(
1− δt

2
a2δxx

)
w

n+ 1
2

j,k =
(
1 +

δt

2
a2δyy

)
wn
j,k +

δt

2
fnj,k,(

1− δt

2
a2δyy

)
wn+1
j,k =

(
1 +

δt

2
a2δxx

)
w

n+ 1
2

j,k +
δt

2
fn+1
j,k .

Three dimensional schemes

Below we give a brief presentation of three-dimensional ADI schemes. As before,
we consider the heat equation

∂u

∂t
− a2

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= 0.

The extension of two-dimensional ADI schemes to three dimensions in not
straightforward as the example of the Peaceman-Rachford scheme shows. The
three-dimensional Peaceman-Rachford scheme is not unconditionally stable and
is only first-order accurate in time. On the other hand, the three-dimensional
Douglas-Rachford scheme

(1− δt a2δxx)w
∗
j,k,l =

(
1 + δt a2(δyy + δzz)

)
wn
j,k,l,

(1− δt a2δyy)w
∗∗
j,k,l = w∗

j,k,l − δt a2δyyw
n
j,k,l,

(1− δt a2δzz)w
n+1
j,k,l = w∗∗

j,k,l − δt a2δzzw
n
j,k,l

is unconditionally stable and O
(
|δt|+ |δx|2 + |δy|2 + |δz|2

)
accurate, exactly like

in two dimensions.
To obtain unconditionally stable ADI schemes, we have to proceed like in two

dimensions, i.e., start from a stable scheme, like the Crank-Nicolson or the implicit
Euler scheme, and perform an appropriate splitting. We will illustrate such splitting
for the three-dimensional Crank-Nicolson scheme(

1− δt

2
a2(δxx + δyy + δzz)

)
wn+1
j,k,l =

(
1 +

δt

2
a2(δxx + δyy + δzz)

)
wn
j,k,l

(6.24)

which is unconditionally stable and O
(
|δt|2 + |δx|2 + |δy|2 + |δz|2

)
accurate.

Adding to the left hand side the expression

(δt)2

4
a4(δxxδyy + δxxδzz + δyyδzz)w

n+1
j,k,l −

(δt)3

8
a6δxxδyyδzzw

n+1
j,k,l
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and the similar expression for wn
j,k,l to the right hand side, we obtain the scheme

(
1− δt

2
a2δxx

)(
1− δt

2
a2δyy

)(
1− δt

2
a2δzz

)
wn+1
j,k,l

=
(
1 +

δt

2
a2δxx

)(
1 +

δt

2
a2δyy

)(
1 +

δt

2
a2δzz

)
wn
j,k,l.

(6.25)

Collecting the added terms

(δt)2

4
a4(δxxδyy + δxxδzz + δyyδzz)

(
wn+1
j,k,l − wn

j,k,l

)
− (δt)3

8
a6δxxδyyδzz

(
wn+1
j,k,l + wn

j,k,l

)
,

we obtain an expression of order O
(
|δt|3

)
. Hence, up to O

(
|δt|2

)
the schemes

(6.24) and (6.25) are equivalent.
We now write (6.25) in the form

(
1− δt

2
a2δxx

)(
1− δt

2
a2δyy

)(
1− δt

2
a2δzz

)(
wn+1
j,k,l − wn

j,k,l

)
= δt a2(δxx + δyy + δzz)w

n
j,k,l +

(δt)3

4
a6δxxδyyδzzw

n
j,k,l.

(6.26)

Since the last term in equation (6.26) is of order O
(
|δt|3

)
, it can be dropped

without destroying the scheme accuracy. We split the modified scheme using the
so-called ∆-formulation. Then we arrive at the Douglas-Gunn scheme

(1− δt

2
a2δxx)∆w

∗
j,k,l = δt a2(δxx + δyy + δzz)w

n
j,k,l,

(1− δt

2
a2δyy)∆w

∗∗
j,k,l = ∆w∗

j,k,l,

(1− δt

2
a2δzz)∆wj,k,l = ∆w∗∗

j,k,l,

∆wj,k,l = wn+1
j,k,l − wn

j,k,l.

The scheme is O
(
|δt|2+ |δx|2+ |δy|2+ |δz|2

)
accurate as the Crank-Nicolson
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scheme. Applying the discrete Fourier transform to this scheme we find(
1 + 2a2λx sin

2 ξx
2

)(
1 + 2a2λy sin

2 ξy
2

)(
1 + 2a2λz sin

2 ξz
2

)
Ŵn+1

=
(
1− 2a2λx sin

2 ξx
2

− 2a2λy sin
2 ξy
2

− 2a2λz sin
2 ξz
2

+ 4a4λxλy sin
2 ξx
2
sin2

ξy
2

+ 4a4λxλz sin
2 ξx
2
sin2

ξz
2

+ 4a4λyλz sin
2 ξy
2
sin2

ξz
2

+ 8a6λxλyλz sin
2 ξx
2
sin2

ξy
2
sin2

ξz
2

)
Ŵn.

It is easy to check that the amplification function G(ξx, ξy, ξz) which follows from
this expression fulfills the condition

−1 ≤ G(ξx, ξy, ξz) ≤ 1.

Hence, the scheme is unconditionally stable. Being stable and consistent the scheme
is convergent.





Chapter 7

Finite element methods

The finite difference methods with uniform grids are easy to implement in com-
puter codes. But these methods are not flexible enough for complex domains and
low smoothness data. An alternative approach is based on the Galerkin approxi-
mation described in Section 5.3 and is called the finite element method.

The finite element method has become the most important method for approx-
imating the solutions of partial differential equations, in particular of elliptic and
parabolic types. The method is based on the variational form of boundary value
problems and approximates the exact solution by a piecewise polynomial func-
tion. In that approach, one can easily handle complicated domains and solutions of
minimal regularity. It permits an accurate error analysis allowing to estimate the
cost of the made approximation. The method results in a finite algebraic system of
equations for the approximate solution. But, unlike the finite difference method,
the approximate solution is known in the whole domain as a piecewise polynomial
function and not just as a set of values in grid points.

7.1 Finite elements for elliptic equations

The Galerkin method applied in Section 5.3 to second-order parabolic equations
can also be applied to the elliptic equation

Au = f, in U,

u|∂U = 0,
(7.1)

where A is the uniformly elliptic operator in divergence form given by (5.7) with
coefficients aij , bi, and c sufficiently smooth.

Before implementing the Galerkin approximation we modify slightly the ellip-
tic problem (7.1). Let us recall that in the proof of existence of weak solutions in
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Section 5.2 we have modified the elliptic problem (7.1) to the following

Au+ µu = f, in U,

u|∂U = 0,

and have proved that for a sufficiently large µ this problem possesses a unique
solution. That corresponds to adding to the function c(x) in the definition of A a
large constant µ. To simplify the presentation we assume now that a sufficiently
large constant has been already added to c(x) and the bilinear form B[u, v] (see
Theorem 5.20) is given by the expression

B[u, v] =

∫
U

( d∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

d∑
i=1

bi(x)
∂u

∂xi
v + c̄(x)uv

)
dx, (7.2)

where c̄(x) = c(x) = µ. In what follows we will skip the bar over c(x) assuming
that the function c(x) in the definition of A is such that estimate (7.5) (see below)
holds.

Hence we will consider the weak formulation of the Dirichlet problem (7.1)

find u ∈ H1
0 (U): B[u, v] = (f, v), ∀v ∈ H1

0 (U). (7.3)

The following estimates can be derived from the estimates of Theorem 5.20

|B[u, v]| ≤ α∥u∥H1
0 (U)∥v∥H1

0 (U), (7.4)

β∥u∥2H1
0 (U) ≤ B[u, u]. (7.5)

The bilinear form B[u, v] is said to be coercive when it fulfills inequality (7.5).
To implement the Galerkin approximation, we have to select a basis {ψk}∞k=1

and define the functions

um =

m∑
k=1

dkmψk,

to approximate the Dirichlet problem (7.1) by the weak formulation

B[um, ψk] = (f, ψk), k = 1, . . . ,m. (7.6)

Using the definition of um, we can reduce (7.6) to the linear system

m∑
i=1

ekidim = fk, k = 1, . . . ,m, (7.7)
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where eki = B[ψi, ψk] and fk = (f, ψk). This system of linear equations pos-
sesses a unique solution since {eki}mk,i=1 is a nonsingular matrix due to the coer-
civeness of B.

In Section 5.3 we have chosen as {ψk}∞k=1 the eigenvectors of operator A0 =∑d
i,j=1−

∂
∂xi

(
aij(x)

∂u
∂xj

)
which form an orthonormal basis in L2(U) and an or-

thogonal basis in H1
0 (U). It appears, however, that using the eigenvectors of A0

as the basis is not efficient for numerical implementation. The construction of the
basis suitable for numerical computations is the most challenging problem in the
implementation of the Galerkin approximation. One of the possibilities is to use the
so-called finite elements. First, we will present their construction in one dimension.

The finite element method in the one-dimensional case. Let U be a finite in-
terval. Without loss of generality, we can take U = (0, 1) and

Au(x) := − d
dx(a

2(x)du(x)dx ) + b(x)du(x)dx + c(x)u(x) = f(x), in U,

with u(0) = u(1) = 0.
We define a partition Th dividing (0, 1) into M sub-intervals Kj = (xj−1, xj),

called elements, with width hj = xj − xj−1 such that

0 = x0 < x1 < · · · < xM−1 < xM = 1.

We set h = maxj hj and for h ∈ HI ⊂ (0,+∞) construct the family of spaces

Xr
h = {vh ∈ C(Ū): vh

∣∣
Kj

∈ Πr, ∀Kj ∈ Th}, r = 1, 2, . . . , (7.8)

where Πr = Πr(K) denotes the space of polynomials of degree not greater than r
defined in K.

We replace H1
0 (U), the functional space for the Galerkin approximation, by

the finite dimensional space Vh = Xr
h∩H1

0 (U) with a fixed r. We construct now a
basis {ϕi} in Vh. Let us begin withX1

h. X1
h is a space of piecewise linear functions.

Each such function is uniquely determined by its values in the vertices xj . Since
we have M + 1 vertices then defining M + 1 basis functions ϕi, i = 0, . . . ,M ,
we define the space X1

h. The basis which is mostly used is the basis consisting of
functions ϕi such that

ϕi(xj) = δij , i, j = 0, 1, . . . ,M, (7.9)

where δij is the Kronecker delta.
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These functions, called the ”hat” functions due to their shape, are given by the
expression

ϕi(x) =


x−xi−1

xi−xi−1
, for xi−1 ≤ x ≤ xi,

xi+1−x
xi−xi−1

, for xi ≤ x ≤ xi+1,

0, otherwise.

(7.10)

We now define X2
h, a space of piecewise quadratic functions. Since a quadratic

function is uniquely defined by its values in 3 distinct points, to define a basis
of quadratic functions in each sub-interval, we have to supplement vertices xj by
midpoints of each sub-interval (xj−1, xj) obtaining points

0 = x0 < x1 < · · · < x2M = 1.

Then 2M + 1 basis functions ϕi of X2
h can be such that

ϕi(xj) = δij , i, j = 0, 1, . . . , 2M.

That construction can be extended to arbitrary integers r > 0.
We now return to the one-dimensional elliptic problem

− d
dx(a

2(x)du(x)dx ) + b(x)du(x)dx + c(x)u(x) = f(x), 0 < x < 1,

u(0) = 0 = u(1).
(7.11)

Our goal is to find an approximate solution to this problem in the family of
spaces Vh with h ∈ HI

Vh = {vh ∈ X1
h: vh(0) = 0 = vh(1)}.

These spaces are finite-dimensional subspaces of H1
0 (0, 1) since functions from

X1
h are differentiable on (0, 1) except a finite number of vertices xj .

We construct the Galerkin approximation by finding uh ∈ Vh which for each
vh ∈ Vh solves the equation

BI [uh, vh] :=

∫ 1

0

(
a2(x)duh

dx
dvh
dx + b(x)duh

dx vh + c(x)uhvh

)
dx

=

∫ 1

0
f(x)vhdx.

(7.12)

Using the basis of the hat functions inX1
h we can expand uh(x) =

∑M−1
i=1 wiϕi(x).

Then taking as vh basis functions ϕj(x) we can rewrite (7.12) as the linear system

AhW = F, (7.13)
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where Ah is the so-called stiffness matrix with elements aij = BI [ϕi, ϕj ], W =
(w1, . . . wM−1) is the vector of components of uh in the basis ϕi, and F is the load
vector with components fi = (f, ϕi) (lack of indices i = 0 and i = M is due to
the boundary conditions uh(0) = uh(1) = 0).

According to our assumptionsBI [u, v] is coercive, thereforeAh is nonsingular
and there is a unique solution of system (7.13). Then uh(x) =

∑M−1
i=1 wiϕi(x) is

an approximate weak solution of the Dirichlet problem (7.11). Our ultimate goal
is to estimate the error of this approximation.

Before we analyze the error, we define an interpolation operator in X1
h and

discuss its properties. For v ∈ C([0, 1]) we define the interpolant I1hv determined
by the partition Th. For each node xi, i = 0, . . . ,M , we set

I1hv(xi) = v(xi).

Using the basis {ϕi}Mi=0 of X1
h we can write the interpolant in the following way

I1hv(x) =

M∑
i=0

v(xi)ϕi(x).

The operator I1h : C([0, 1]) → X1
h is called the interpolation operator. Let us

observe that in one dimension functions from H1(0, 1) are continuous, hence the
interpolation operator is also well defined in H1(0, 1).

Analogously, we can define the interpolation operator Irh : C([0, 1]) → Xr
h

for r > 1. First, we interpolate v on each Kj ∈ Th projecting v on Πr(Kj).
This projection is defined, similarly like in the case of X1

h, on the basis functions
ϕi,j ∈ Πr(Kj) such that

ϕi,j(xj,l) = δil,

where xj,l, l = 0, . . . , r are r+1 nodes of Kj . Denoting this interpolation as IrKj
v

we can write
Irhv
∣∣∣
Kj

= IrKj

(
v
∣∣
Kj

)
∀Kj ∈ Th. (7.14)

Then we have the following theorem.

THEOREM. 7.1 Let v ∈ Hr+1(0, 1), for r ≥ 1, and Irhv be its interpolant in Xr
h

defined by (7.14). Then the following estimate holds

|v − Irhv|Hm(0,1) ≤ Cm,rh
r+1−m|v|Hr+1(0,1), m = 0, 1,

where the constant Cm,r is independent of v and h.
Here | · |Hk(U) denotes the seminorm in Hk(U) defined by the derivatives of

order k, i.e.,

|u|Hk(U) =

(∑
|α|=k

∫
U

∣∣Dαu
∣∣2dx) 1

2

.
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Proof. We prove the theorem only for r = 1. Due to the Sobolev inequality if
v ∈ H2(0, 1) then v ∈ C1(0, 1) and I1hv is differentiable except a finite number
of nodes xj . Let z = v − I1hv. Since z(xi) = 0, i = 0, . . . ,M , then by Rolle’s
theorem in each Kj = (xj−1, xj) there exists ξj ∈ Kj such that z′(ξj) = 0.

Since I1hv is a linear function in each Kj , then

z′(x) =

∫ x

ξj

z′′(s)ds =

∫ x

ξj

v′′(s)ds, for x ∈ Kj ,

where the last integral is well defined since v ∈ H2(0, 1).
By the Hölder inequality we obtain

|z′(x)| ≤
∫ xj

xj−1

|v′′(s)|ds ≤
(
|xj − xj−1|

) 1
2

(∫ xj

xj−1

|v′′(s)|2ds
) 1

2

≤ h
1
2

(∫ xj

xj−1

|v′′(s)|2ds
) 1

2

.

(7.15)

Hence ∫ xj

xj−1

|z′(s)|2ds ≤ h2
∫ xj

xj−1

|v′′(s)|2ds.

Since for x ∈ Kj

z(x) =

∫ x

xj−1

z′(s)ds

then, using estimate (7.15), we obtain

|z(x)| ≤
∫ xj

xj−1

|z′(s)|ds ≤ h
3
2

(∫ xj

xj−1

|v′′(s)|2ds
) 1

2

.

That gives ∫ xj

xj−1

|z(s)|2ds ≤ h4
∫ xj

xj−1

|v′′(s)|2ds.

Summing over all Kj , j = 1, . . . ,M , we obtain∫ 1

0
|z′(s)|2ds ≤ h2

∫ 1

0
|v′′(s)|2ds,∫ 1

0
|z(s)|2ds ≤ h4

∫ 1

0
|v′′(s)|2ds.

These estimates prove the theorem for r = 1 with Cm,1 = 1, m = 0, 1.

The following lemma is valid for multi-dimensional finite element approxima-
tions, which we will discuss in the next subsection.
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THEOREM. 7.2 (Céa’s lemma) Let us consider u ∈ H1
0 (U) a weak solution of

the Dirichlet problem (7.1) and its Galerkin approximation uh ∈ Vh which solves
(7.26) where U is an open, bounded domain in Rd. Then

∥u− uh∥H1
0 (U) ≤

α

β
inf

vh∈Vh

∥u− vh∥H1
0 (U).

Proof. The proof follows from the properties of the bilinear form B[u, v]. Let
u ∈ H1

0 (U) solve
B[u, v] = (f, v), ∀v ∈ H1

0 (U),

and uh ∈ Vh solve
B[uh, v] = (f, v), ∀v ∈ Vh.

Since Vh ⊂ H1
0 (U) then taking both equalities with v ∈ Vh we obtain the orthogo-

nality relation
B[u− uh, v] = 0, ∀v ∈ Vh. (7.16)

Let vh ∈ Vh. Taking v = uh − vh in (7.16) we have

B[u− uh, u− uh] = B[u− uh, u− vh] ≤ α∥u− uh∥H1
0 (U)∥u− vh∥H1

0 (U).

On the other hand, the coerciveness of B gives

β∥u− uh∥2H1
0 (U) ≤ B[u− uh, u− uh].

By the above estimates, we have

∥u− uh∥H1
0 (U) ≤

α

β
∥u− vh∥H1

0 (U).

Since vh is an arbitrary vector in Vh, this proves the assertion of the theorem.

A simple corollary from the Céa lemma is the following H1 error estimate of
the Galerkin approximation.

THEOREM. 7.3 Let u ∈ H1
0 (0, 1) be a solution of problem (7.11) and uh a

solution of its finite element approximation (7.12) in Vh = H1
0 (0, 1) ∩ Xr

h. In
addition, let u ∈ Hm+1(0, 1) for m ≥ r. Then the following a priori estimate
holds

∥u− uh∥H1
0 (0,1)

≤ α

β
Chr|u|Hr+1(0,1),

where the constant C is independent of u and h.
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Proof. Inserting in Céa’s lemma vh = Irhu, we get

∥u− uh∥H1
0 (0,1)

≤ α

β
∥u− Irhu∥H1

0 (0,1)
,

By the estimate of Theorem 7.1, we obtain the claim of the theorem.

We can obtain a better error estimate in L2(0, 1).

THEOREM. 7.4 Let u ∈ H1
0 (0, 1) be a solution of problem (7.11) and uh a

solution of its finite element approximation (7.12) in Vh = H1
0 (0, 1) ∩ Xr

h. In
addition, let u ∈ Hm+1(0, 1) for m ≥ r. Then the following a priori estimate
holds

∥u− uh∥L2(0,1) ≤ C hr+1|u|Hr+1(0,1),

where the constant C is independent of u and h.

Proof. For an arbitrary g ∈ L2(0, 1), we consider the following dual problem

find z ∈ H1
0 (0, 1): BI [v, z] = (v, g), ∀v ∈ H1

0 (0, 1).

It can be shown (similarly like for problem (7.11)) that the dual problem has a
unique solution z = z(g) and the following regularity result holds

∥z∥H2(0,1) ≤ C∥g∥L2(0,1), ∀g ∈ L2(0, 1), (7.17)

(see the regularity result of Theorem 5.22).
Let eh = u− uh. Choosing g = eh and v = eh we obtain

BI [eh, z(eh)] = ∥eh∥2L2(0,1).

Due to the Galerkin orthogonality property (7.16), we have

BI [eh, z] = BI [u− uh, z] = BI [u− uh, z − I1hz] = BI [eh, z − I1hz].

Then, using the estimate of Theorem 7.1 and estimate (7.17), we have

∥eh∥2L2(0,1) = BI [eh, z] = BI [eh, z − I1hz]

≤ C∥eh∥H1(0,1)∥z − I1hz∥H1(0,1) ≤ C h∥eh∥H1(0,1)∥z∥H2(0,1)

≤ C h∥eh∥H1(0,1)∥eh∥L2(0,1).

Thus we obtain
∥eh∥L2(0,1) ≤ C h∥eh∥H1(0,1)

which together with Theorem 7.3 gives the desired estimate.
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The multi-dimensional case. To extend the finite element method to multi-di-
mensional domains we have to define finite elements for multi-dimensional boun-
dary-value problems. Let U ⊂ Rd be an open, bounded, convex domain with a
Lipschitz boundary. Our first step is to define a triangulation of U . Contrary to the
one-dimensional case we now have many possibilities of triangulations. The most
popular is to split U into simplices. If {x0, . . . , xd} are d+1 points in Rd then the
convex hull of {x0, . . . , xd} is called a simplex when vectors {x1−x0, . . . , xd−x0}
are linearly independent (in other words {x0, . . . , xd} do not belong to a single
hyperplane in Rd). Points {x0, . . . , xd} are then called the vertices of the simplex.
The standard simplex in Rd is the set

K̂d = {x ∈ Rd: xi ≥ 0,
d∑

i=1

xi ≤ 1}. (7.18)

This is a unit interval in R1, a unit triangle in R2, and a unit tetrahedron in R3.
The triangulation Th of U ⊂ Rd is for a given h a division of U into non-

overlapping simplices in such a way that the intersection of any two simplices of
Th is either empty or a common face, where a face of dimension m < d of a
simplex is the convex hull of a subset of m+1 its vertices. For a simplex K ∈ Th,
we define its diameter hK = diam(K). Then the diameter of triangulation Th is
h = maxK∈Th hK .

In general, for a convex domain U with a Lipschitz boundary the sum of all
simplices of a triangulation

Uh = int

( ⋃
K∈Th

K

)
is a proper subset of U . That leads to additional difficulties with an error estimate
on U \ Uh. In what follows, we omit that problem assuming that the shape of U is
such that U = Uh.

DEFINITION. 7.5 For each simplexK ∈ Th we define a finite element as a triple
(K,Πr(K),Σ) where

(i) K is a closed simplex with a Lipschitz boundary;

(ii) Πr(K) is a space of polynomials of degree not greater than r, dimension
Mr =

(
r+d
r

)
, and a basis {ϕi}Mr

i=1;

(iii) Σ is a set of linear functionals called the degrees of freedom σi: Π
r(K) →

R, i = 1, . . . ,Mr, which are linearly independent.
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The basis of Πr(K) is selected to be dual to Σ, i.e., σi(ϕj) = δij .
The space Πr(K) is called unisolvent with respect to the functionals {σi}Mr

i=1

if for each a = (α1, . . . , αMr) ∈ RMr there is exactly one polynomial P ∈ Πr(K)
such that σi(P ) = αi, i = 1, . . . ,Mr. When the space Πr(K) is unisolvent, we
say also that the functionals {σi}Mr

i=1 are unisolvent.

DEFINITION. 7.6 Let Πr(K) be unisolvent. There exists in K a set of points
{ai}Mr

i=1 such that for ∀P ∈ Πr(K) σi(P ) = P (ai), i = 1, . . . ,Mr. These points
are called nodes.

The finite elements whose linear functionals are defined by evaluations on the
nodes in K are called the Lagrangian finite elements. For the Lagrangian finite
elements we have for every P ∈ Πr(K) the expansion P (x) =

∑Mr
i=1 σi(P )ϕi(x).

For the Lagrangian finite elements, the functionals σi are often identified with
the nodes ai, and then ai are called the degrees of freedom.

DEFINITION. 7.7 A family of triangulations Th parametrized by h ∈ HI ⊂
(0,∞) forms regular triangulations if

i) 0 is a limit point of HI ;

ii) there is a constant C ≥ 1 such that

hK ≤ C ρ(K), ∀K ∈ Th,

where ρ(K) is the radius of the greatest circle inscribed in K.

DEFINITION. 7.8 Consider a finite element (K̂, Π̂r(K̂), Σ̂) where K̂ is a stan-
dard simplex in Rd defined by (7.18), Π̂r(K̂) is the space of polynomials on K̂ of
degree not greater than r, and Σ̂ is a set of unisolvent functionals on Π̂r(K̂).

Mappings GK: K̂ → K defined for each K ∈ Th by the expression GK(x̂) =
JK x̂+bK , x̂ ∈ K̂, where JK is a nonsingular matrix and bK is a vector, are called
affine mappings. The collection of finite elements (K,Πr(K),Σ) for K ∈ Th is an
affine family of finite elements if

(i) K = GK(K̂);

(ii) Πr(K) = {P : P = P̂ ◦G−1
K , P̂ ∈ Π̂r(K̂)};

(iii) Σ = {σi: σi(P (x)) = σ̂i
(
P (GK(x̂))

)
, σ̂i ∈ Σ̂, x = GK(x̂)}.
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LEMMA. 7.9 Let Th be a family of regular triangulations of affine finite elements.
For any integer m ≥ 0 and each v ∈ Hm(K) we define a function v̂ = v ◦ GK :
K̂ → R. Then v̂ ∈ Hm(K̂) and the following estimates hold

|v̂|Hm(K̂) ≤ C∥JK∥m|det JK |−
1
2 |v|Hm(K), (7.19)

|v|Hm(K) ≤ C∥J−1
K ∥m| det JK |

1
2 |v̂|Hm(K̂), (7.20)

with the constant C depending only on m.
The operator norm ∥ · ∥ is implied by the Euclidean norm in Rd and we have

the following estimates

∥JK∥ ≤ hK

ρ(K̂)
, ∥J−1

K ∥ ≤
hK̂
ρ(K)

. (7.21)

Proof. Let us recall that

|v̂|Hm(K̂) =

( ∑
|α|=m

∫
K̂
|Dαv̂|2dx̂

) 1
2

.

By the definition of v̂ and the chain rule we have for |α| = m

∥Dαv̂∥L2(K̂) ≤ C∥JK∥m
∑

|β|=m

∥(Dβv) ◦GK∥L2K̂)

≤ C∥JK∥m|det JK |−
1
2

∑
|β|=m

∥Dβv∥L2(K).

Summing the last inequality over all multi-indices α with |α| = m we get (7.19).
The proof of (7.20) is analogous.

To prove estimates (7.21) let us recall the definition of the operator norm

∥JK∥ =
1

ρ(K̂)
sup

|ξ|=ρ(K̂)

|JKξ|.

For each ξ such that |ξ| = ρ(K̂), we can find two points x̂, ŷ ∈ K̂ with x̂− ŷ = ξ.
Since JKξ = GK(x̂)−GK(ŷ) we have the estimate |JKξ| ≤ hK which gives the
first of estimates (7.21). The proof of the second is similar.

Similarly to the one-dimensional case, we define the spaces

Xr
h = {vh ∈ C(Ū): vh

∣∣
K

∈ Πr, ∀K ∈ Th},
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and the finite element space Vh = Xr
h∩H1

0 (U). ForXr
h we define the interpolation

operator
Irh: C(Ū) → Xr

h,

which for a given triangulation Th of U is defined on each finite element K ∈
Th as the local interpolation operator associating to a continuous function v the
polynomial Irhv ∈ Πr(K) such that

Irhv(x) =

Mr∑
i=1

v(ai)ϕi(x),

where {ϕi} is a basis of Πr(K) and {ai} are nodes in K.
To prove the estimate of the interpolation error, we need the following im-

proved version of the Bramble-Hilbert lemma [15].

LEMMA. 7.10 LetU be a bounded, convex domain in Rd. If v ∈ Hm(U),m ≥ 1,
then for 0 ≤ j < m

inf
Q∈Πm−1(U)

|v −Q|Hj(U) ≤ C|v|Hm(U),

where the constant C = C(d,m, j, U).

We begin with a local estimate of the interpolation error.

THEOREM. 7.11 Let Th be a family of regular triangulations of affine finite ele-
ments in Rd. Let 2(r + 1) > d and 0 ≤ m ≤ r + 1. Then there exists a constant
C = C(r,m, K̂) such that

|v − Irhv|Hm(K) ≤ C
hr+1
K

ρm(K)
|v|Hr+1(K), ∀v ∈ Hr+1(K).

Proof. SinceK is bounded and convex, we have the Sobolev embedding (Theorem
5.15) for 2(r + 1− s) > d

Hr+1(K) = H(r+1−s)+s(K) ⊂) Cs(K).

The interpolation operator Irh is then well defined in Hr+1(K).
Due to the above Sobolev embedding we have the interpolation operator Îrh :

Cs(K̂) → Hr+1(K̂) defined by the expression Irhv ◦ GK = Îrhv̂. An immediate
consequence of this definition is the following equality

|(v − Irhv) ◦GK |Hm(K̂) = |v̂ − Îrhv̂|Hm(K̂). (7.22)
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Since Îrhv̂(x̂) =
∑Mr

i=1 v̂(âi)ϕ̂i(x̂) the boundedness of this operator follows from
the estimate

∥Îrhv̂∥Hr+1(K̂) ≤
Mr∑
i=1

|v̂(âi)|∥ϕ̂i∥Hr+1(K̂) ≤ C sup
x̂

|v̂(x̂)| = C∥v̂∥C(K̂).

We begin the proof of the theorem showing that for all 0 ≤ j ≤ r + 1 the
following estimate holds

|v̂ − Îrhv̂|Hj(K̂) ≤ C|v̂|Hr+1(K̂). (7.23)

Taking a polynomial Q̂ ∈ Πr(K̂) we obtain by the boundedness of Îrh and the
Sobolev embedding

∥v̂ − Îrhv̂∥Hr+1(K̂) = ∥v̂ − Q̂− Îrh(v̂ − Q̂)∥Hr+1(K̂)

≤ ∥v̂ − Q̂∥Hr+1(K̂) + ∥Îrh(v̂ − Q̂)∥Hr+1(K̂)

≤ ∥v̂ − Q̂∥Hr+1(K̂) + C∥v̂ − Q̂∥C(K̂)

≤ C∥v̂ − Q̂∥Hr+1(K̂).

By Lemma 7.10 we have for j ≤ r

|v̂ − Q̂|Hj(K̂) ≤ C|v̂|Hr+1(K̂).

For j = r + 1 we get

|v̂ − Q̂|Hr+1(K̂) = |v̂|Hr+1(K̂)

as Q̂ is a polynomial of degree r.
Since Q̂ is arbitrary, then we obtain

∥v̂ − Îrhv̂∥Hr+1(K̂) ≤ C|v̂|Hr+1(K̂).

Estimate (7.23) follows immediately from the above inequality.
By Lemma 7.9, equality (7.22), and estimate (7.23) we have

|v − Irhv|Hm(K) ≤ C∥J−1
K ∥m|det JK |

1
2 |v̂ − Îrhv̂|Hm(K̂)

≤ C
hm
K̂

ρm(K)
|det JK |

1
2 |v̂ − Îrhv̂|Hm(K̂)

≤ C
hm
K̂

ρm(K)
|det JK |

1
2 |v̂|Hr+1(K̂)

≤ C
1

ρm(K)
|det JK |

1
2 |v̂|Hr+1(K̂),
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where the constant C is a function of (r,m, K̂).
Applying (7.19) and (7.21) to the above inequality we obtain

|v − Irhv|Hm(K) ≤ C
1

ρm(K)
|det JK |

1
2 |v̂|Hr+1(K̂)

≤ C
1

ρm(K)
∥JK∥r+1|v|Hr+1(K) ≤ C

hr+1
K

ρm(K)
|v|Hr+1(K),

which completes the proof.

Finally, we have the following global estimate.

THEOREM. 7.12 Let {Th}h>0 be a family of regular triangulations of affine fi-
nite elements in a convex domain U ⊂ Rd and v ∈ Hr+1(U), for 2(r + 1) > d.
Then for m = 0, 1 the following estimates hold

|v − Irhv|Hm(U) ≤ C

(∑
K∈Th

h
2(r+1−m)
K |v|2Hr+1(K)

) 1
2

, (7.24)

|v − Irhv|Hm(U) ≤ C hr+1−m|v|Hr+1(U), (7.25)

where C = C(r,m, d). The restriction m = 0, 1 is the result of the requirement
Irhv ∈ Hm(Ω) which holds only for m ≤ 1.

Proof. By Theorem 7.11 we have

|v−Irhv|2Hm(U) =
∑
K∈Th

|v − Irhv|2Hm(K)

≤ C
∑
K∈Th

h
2(r+1)
K

ρ2m(K)
|v|2Hr+1(K) = C

∑
K∈Th

h2mK
ρ2m(K)

h
2(r+1−m)
K |v|2Hr+1(K)

≤ C
∑
K∈Th

h
2(r+1−m)
K |v|2Hr+1(K),

which proves (7.24) with C = C(r,m, d). Estimate (7.25) follows from the fact
that simplices K are not overlapping, then for every k ≥ 0

|v|Hk(U) =

(∑
K∈Th

|v|2Hk(K)

) 1
2

.
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Let Vh = Xr
h∩H1

0 (U). We can introduce the following finite element problem
for the second-order elliptic equation (7.1) with the Dirichlet boundary conditions

find uh ∈ Vh: B[uh, vh] = (f, vh), ∀vh ∈ Vh. (7.26)

The existence of a unique uh which solves (7.26) follows from the equivalence of
(7.26) with (7.6) and the unique solvability of the linear system (7.7). Once the
interpolation error is estimated, we can estimate the approximation errors similarly
to the one-dimensional case. Then we have the following theorems.

THEOREM. 7.13 Let u ∈ H1
0 (U) be a solution of (7.3), U ⊂ Rd, and uh ∈ Vh

its approximate finite element solution, i.e., a solution of (7.26), obtained with
affine finite elements of degree r for a family of regular triangulations Th. If u ∈
Hr+1(U), 2(r + 1) > d, then the following a priori error estimates hold

∥u− uh∥H1
0 (U) ≤

α

β
C

(∑
K∈Th

h2rK |u|2Hr+1(K)

) 1
2

,

∥u− uh∥H1
0 (U) ≤

α

β
C hr|u|Hr+1(U),

(7.27)

where the constant C is independent of h and u.

THEOREM. 7.14 Let u ∈ H1
0 (U) be a solution of (7.3), U ⊂ Rd, and uh ∈

Vh its approximate solution, i.e., a solution of (7.26), obtained with affine finite
elements of degree r for a family of regular triangulations Th. If u ∈ Hm+1(U) ∩
C(Ū), for m > 0, then the following a priori error estimate holds

∥u− uh∥L2(U) ≤ C hs+1|u|Hs+1(U), s = min(m, r) (7.28)

where the constant C is independent of h and u.

We conclude this section with some remarks on error control. Due to the esti-
mates of Theorem 7.13, we can reduce the approximation error by decreasing the
size of the finite element mesh or increasing r. The increase of r is not very com-
mon as polynomials of higher-order lead to unstable numerical schemes. Hence,
to reduce the approximation error, it is advised to refine the grid. But decreas-
ing h for the whole grid is not the most efficient strategy. It is more convenient
to rely on the first of estimates (7.27) and refine the grid only for those elements
K on which the contribution to the global error is large. This strategy is called
grid adaptivity, and its implementation requires the grid refinement for elements
K on which the seminorm |u|Hr+1(K) is large. This is called a priori adaptivity
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as we use a priori estimates. The strategy seems to be of little use as the exact
solution u is not known. We can, however, replace u in the a priori estimate by a
well-chosen approximation. That strategy is, however, not that simple as even for
a two-dimensional problem, we need the seminorm in H2. Assume that we use
linear elements. Then uh is continuous and even piecewise differentiable. But to
compute the approximate second derivative of uh is not a straightforward operation
since we need a special reconstruction technique for the first-order derivatives. We
are not going into details of this procedure, but it is clear that using grid adaptivity
we need sophisticated software for automatic grid generation.

In use is also a posteriori adaptivity since it is possible to obtain an error esti-
mate in terms of the approximate solution uh, so-called a posteriori estimates. That
approach is not much easier for a computer implementation since we replace the
reconstruction technique with the numerically demanding a posteriori estimates.

7.2 Finite elements for parabolic equations

We consider now the linear parabolic initial-boundary value problem

∂
∂tu+Atu = f, in (0, T ]× U,

u = 0, on [0, T ]× ∂U,

u = g, on {t = 0} × U,

(7.29)

where U ⊂ Rd and At is the uniformly parabolic operator in divergence form de-
fined in Section 5.3. To simplify the presentation we assume that the coefficients of
At are time independent. Similarly to the elliptic case we assume that the bilinear
form generated by operator At is coercive and is given by equation (7.2). Then we
drop the superscript t from At and Bt[u, v] since these operators are independent
of time. By a weak solution of problem (7.29) we mean a function u(t) = u(t, ·),
u(t) ∈ H1

0 (U) for t ∈ [0, T ], which fulfills the following initial value problem

⟨ d
dtu(t), v⟩+B[u(t), v] = (f(t), v), ∀v ∈ H1

0 (U),

u(0) = g.
(7.30)

To find a numerical solution we approximate (7.30) by finite elements in space
variables. Let Vh be an Mr-dimensional space of finite elements and {ϕi}Mr

i=1 a
basis in Vh. First, we consider the so-called spatially semi-discrete problem: find
a function uh(t) = uh(t, ·) such that uh(t) ∈ Vh for all t ∈ [0, T ] and uh is a
solution of the following initial value problem

⟨ d
dtuh(t), v⟩+B[uh(t), v] = (f(t), v), ∀v ∈ Vh,

uh(0) = gh,
(7.31)
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where gh ∈ Vh is an approximation of g.
The function uh can be expanded in the basis of Vh

uh(t, x) =

Mr∑
i=1

wi(t)ϕi(x).

Inserting this series into (7.31), we obtain

Mr∑
i=1

d
dtwi(t)(ϕi, ϕj) +

Mr∑
i=1

wi(t)B[ϕi, ϕj ] = (f(t), ϕj), j = 1, . . . ,Mr.

Denoting by W (t) =
(
w1(t), . . . , wMr(t)

)
the vector of unknowns, by Eh the

mass matrix with the elements(
Eh

)
ij
= (ϕi, ϕj), i, j = 1, . . . ,Mr,

by Ah the stiffness matrix with the elements(
Ah

)
ij
= B[ϕi, ϕj ], i, j = 1, . . . ,Mr,

and by Fh(t) =
(
f1(t), . . . , fMr(t)

)
the load vector with the components

fi(t) = (f(t), ϕi), i = 1, . . . ,Mr,

we reduce the Galerkin approximation to the following system of ordinary differ-
ential equations

Eh
dW (t)
dt +AhW (t) = Fh(t). (7.32)

Let us observe that Eh is a positive definite matrix since {ϕi} is a basis of Vh. Ah

is also a positive definite matrix by the coerciveness of B[u, v]. Hence the system
(7.32) possesses a unique solution and also uh which solves (7.31) is uniquely
defined.

To obtain a fully discretized problem we can apply various discretizations. The
most popular one is to approximate the time derivative by finite differences and
apply two-time-level schemes. Hence, we divide the time interval [0, T ] into N
subintervals, set δt = T

N and obtain the time grid tn = n · δt, n = 0, 1, . . . , N .
Denote Wn = W (tn) and Fn = Fh(tn). We will consider the approximation of
system (7.32) by the θ-scheme

Eh
Wn+1 −Wn

δt
+Ah

(
θWn+1+(1− θ)Wn

)
=
(
θFn+1+(1− θ)Fn

)
. (7.33)
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Then we define the fully discrete Galerkin approximation

unh(x) =

Mr∑
i=1

wn
i ϕi(x), (7.34)

where wn
i = wi(tn) according to the previously introduced notation.

Our goal is to prove that unh converge to u(t, x) a solution of the continuous
problem (7.29). We begin with the proof of stability for the θ-schemes. An impor-
tant step in the proof is based on the following inverse estimate.

LEMMA. 7.15 Let Th be a family of regular triangulations of U ⊂ Rd. Then
there exists a constant Cinv such that for all v ∈ Vh

∥Dv∥L2(U) ≤ Cinv h
−1∥v∥L2(U),

where Dv denotes the gradient of v.

Proof. It is sufficient to prove the above estimate on a single finite element K ∈ Th∫
K
|Dv|2dx ≤ C h−2

∫
K
|v|2dx.

Let K̂ be a standard simplex given by formula (7.18) and G: K̂ → K an affine

map. We define v̂(x̂) = v(G(x̂)) for x̂ ∈ K̂. Denoting J =
(∂x
∂x̂

)
the Jacobian

matrix of G we get Dv̂ = JDv. By the regularity of triangulation ∥J∥ ∼ h,
∥J−1∥ ∼ h−1 and we have

|Dv̂| ≤ Ch|Dv|, |Dv| ≤ Ch−1|Dv̂|.

By the change of variables dx = | det J |dx̂ ≃ hddx̂ we obtain∫
K
|Dv|2dx ≤ C hd−2

∫
K̂
|Dv̂|2dx̂.

Let us observe now that, since Vh is a finite-dimensional space, all norms in Vh are
equivalent. In particular, the Hk-norm is equivalent to the L2-norm. Then∫

U

∑
|α|≤k

|Dαv|2dx ≤ C

∫
U
|v|2dx, ∀v ∈ Vh.

Applying that inequality to the H1 norm we obtain∫
K
|Dv|2dx ≤ C hd−2

∫
K̂
|Dv̂|2dx̂

≤ C hd−2

∫
K̂

∑
|α|≤1

|Dαv̂|2dx̂ ≤ C hd−2

∫
K̂
|v̂|2dx̂ ≤ C h−2

∫
K
|v|2dx.
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THEOREM. 7.16 Assume that the bilinear form B[u, v] fulfills conditions (7.4)
and (7.5) and ∥f(t)∥L2(U) is bounded on [0, T ]. For θ < 1

2
we assume additionally

that the following restriction on the time step holds

δt(1 + Cinvh
−1)2 <

2β

(1− 2θ)α2
, (7.35)

where Cinv is the constant from the estimate in Lemma 7.15 and α, β are the
constants from (7.4) and (7.5).

Then unh which solve the weak formulation of the fully discrete approximation

1

δt

(
un+1
h − unh, vh

)
= −B

[
θun+1

h + (1− θ)unh, vh
]

+
(
θf(tn+1) + (1− θ)f(tn), vh

)
, ∀vh ∈ Vh,

u0h = I1hg,

(7.36)

have the estimate

∥unh∥L2(U) ≤ C

(
∥u0h∥L2(U) + δt

n∑
i=0

∥f(ti)∥L2(U)

)
,

where the constant C depends on θ but is independent of h, δt and N , and is a
non-decreasing function of α, β−1 and T .

Proof. Taking vh = θun+1
h + (1 − θ)unh in (7.36) and applying the elementary

identity

(un+1
h − unh, u

n
h) +

1
2
(un+1

h − unh, u
n+1
h − unh) =

1
2
∥un+1

h ∥L2(U) − 1
2
∥unh∥L2(U),

we obtain

1
2
∥un+1

h ∥2L2(U) − 1
2
∥unh∥2L2(U) + (θ − 1/2)∥un+1

h − unh∥2L2(U)

+ δtB
[
θun+1

h + (1− θ)unh, θu
n+1
h + (1− θ)unh

]
≤ δt

(
θf(tn+1) + (1− θ)f(tn), θu

n+1
h + (1− θ)unh

)
.

By the coerciveness of B[u, v] and the Cauchy inequality, we get for 0 < ϵ ≤ 1

∥un+1
h ∥2L2(U)−∥unh∥2L2(U) + (2θ − 1)∥un+1

h − unh∥2L2(U)

+ 2(1− ϵ)βδt∥θun+1
h + (1− θ)unh∥2H1

0 (U)

≤ δt

2ϵβ
∥θf(tn+1) + (1− θ)f(tn)∥2H−1(U).

(7.37)



182 CHAPTER 7. FINITE ELEMENT METHODS

For θ ≥ 1
2
, (7.37) gives the estimate of ∥un+1

h ∥2L2(U)−∥unh∥2L2(U) which is sufficient
to complete the proof. But for θ < 1

2
, we need a better estimate. To this end, we

insert into (7.36) vh = un+1
h − unh to obtain

∥un+1
h − unh∥2L2(U) = −δtB

[
θun+1

h + (1− θ)unh, u
n+1
h − unh

]
+ δt

(
θf(tn+1) + (1− θ)f(tn), u

n+1
h − unh

)
≤ αδt∥θun+1

h + (1− θ)unh∥H1
0 (U)∥un+1

h − unh∥H1
0 (U)

+ δt∥θf(tn+1) + (1− θ)f(tn)∥H−1(U)∥un+1
h − unh∥H1

0 (U).

By Lemma 7.15 we have

∥un+1
h − unh∥L2(U) ≤δt(1 + Cinvh

−1)
(
α∥θun+1

h + (1− θ)unh∥H1
0 (U)

+ ∥θf(tn+1) + (1− θ)f(tn)∥H−1(U)

)
.

(7.38)

Inserting this estimate into (7.37) and defining for η > 0 the constant

κ = 2(1− ϵ)β − (1− 2θ)α2(1 + η)δt(1 + Cinvh
−1)2

we obtain

∥un+1
h ∥2L2(U) − ∥unh∥2L2(U) + δtκ∥θun+1

h + (1− θ)unh∥2H1
0 (U)

≤ C δt(1 + δt h−2)∥θf(tn+1) + (1− θ)f(tn)∥2H−1(U).
(7.39)

Let us observe that for sufficiently small ϵ, η and θ < 1
2
, we have 0 < κ < +∞

due to (7.35). This gives the estimate of ∥un+1
h ∥2L2(U) − ∥unh∥2L2(U).

Let m be fixed, 1 ≤ m ≤ N . Summing up the estimates for θ < 1
2

from n = 0
to n = m− 1 and similarly the estimates for θ ≥ 1

2
we obtain

∥umh ∥2L2(U) ≤ ∥u0h∥2L2(U) + C δt
m−1∑
n=0

∥θf(tn+1) + (1− θ)f(tn)∥2H−1(U).

Since ∥ · ∥H−1 ≤ ∥ · ∥L2 the assertion of the theorem follows.

The proof of convergence of the finite element approximation will go in two
steps. First, we prove an error estimate for the semi-discrete problem (7.31). The
convergence will be carried on under the simplified assumption that the bilinear
form B[u, v] is symmetric. That corresponds to the assumption that the operator A
in problem (7.29) is self-adjoint.



7.2. FINITE ELEMENTS FOR PARABOLIC EQUATIONS 183

DEFINITION. 7.17 Let the bilinear form B[u, v] implied by the operator A from
(7.29) be symmetric and fulfill estimates (7.4) and (7.5). In H1

0 (U) we define the
Ritz projection Rh

Rh: H
1
0 (U) → Vh

by the equality

B[Rhu, vh] = B[u, vh], ∀u ∈ H1
0 (U), ∀vh ∈ Vh.

The properties of the Ritz projection most relevant for the proofs of subsequent
theorems are summarized in the following lemma.

LEMMA. 7.18

1. For each u ∈ H1
0 (U) and vh ∈ Vh the following orthogonality condition

holds
B[Rhu− u, vh] = 0.

2. For all u ∈ H1
0 (U) we have

∥Rhu− u∥H = min
vh∈Vh

∥vh − u∥H

where ∥v∥H =
(
B[v, v]

) 1
2 is a norm in H1

0 (U) equivalent to the usual norm
of this space due to the symmetry of the bilinear form B[u, v], and estimates
(7.4) and (7.5).

3. If u is a weak solution of (7.3) then the Ritz projection Rhu = uh, where uh
is a finite element solution of (7.26).

Proof. Condition 1. follows from the definition of the Ritz projection. To prove

Condition 2. let us recall that due to (7.4) and (7.5)
(
B[·, ·]

) 1
2 is a norm in H1

0 (U)
equivalent to the norm ∥ · ∥H1

0 (U). Condition 1. implies that Rh is the orthogonal
projection of H1

0 (U) on Vh in the norm ∥ · ∥H. Then Condition 2. is a property of
orthogonal projections in a Hilbert space.

To prove Condition 3. let us observe that the orthogonality relation for the
Ritz projection is in fact the orthogonality relation (7.16) which is valid for the
finite element solution uh. Since Rhu is uniquely defined by the fact that Rh is an
orthogonal projection in H1

0 (U) then Rhu = uh.

The following lemma extends the error estimates for the interpolation operator
in Vh to the Ritz projection.
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LEMMA. 7.19 Let U be an open, convex, bounded domain in Rd. Then for m =
1, 2 we have the estimate

∥Rhu−u∥L2(U)+h|Rhu−u|H1
0 (U) ≤ C hm∥u∥Hm(U), ∀u ∈ Hm(U)∩H1

0 (U).

Proof. Let us recall that due to the assumptions on B[u, v] and the Poincaré in-
equality for a bounded U we have the inequalities

C1∥v∥H1
0 (U) ≤ ∥v∥H ≤ C2∥v∥H1

0 (U),

C1|v|H1
0 (U) ≤ ∥v∥H1

0 (U) ≤ C2|v|H1
0 (U).

(7.40)

The H1
0 estimate of the lemma follows from the fact that Rh is an orthogonal

projection in H. Then ∥Rhu∥H ≤ ∥u∥H and by inequalities (7.40) |Rhu|H1
0 (U) ≤

C|u|H1
0 (U). Hence

|Rhu− u|H1
0 (U) ≤ C|u|H1

0 (U) ≤ C∥u∥H1
0 (U). (7.41)

Since the Ritz projection is an orthogonal projection H → Vh we have

∥Rhu− u∥H = min
v∈Vh

∥v − u∥H,

which gives
∥Rhu− u∥H ≤ ∥I1hu− u∥H.

Then by (7.40)

|Rhu− u|H1
0 (U) ≤ C∥Rhu− u∥H ≤ C∥I1hu− u∥H1

0 (U).

Hence by (7.40) and the estimates of Theorem 7.12 we get

|Rhu− u|H1
0 (U) ≤ C |I1hu− u|H1

0 (U) ≤ C h|u|H2(U) ≤ C h∥u∥H2(U). (7.42)

To obtain the L2 estimate of (Rhu − u) we consider the following weak dual
problem with the right hand side e = Rhu− u

find g ∈ H1
0 (U): B[v, g] = (v, e), ∀v ∈ H1

0 (U).

Due to the assumptions on B, this problem possesses a unique weak solution and
the following regularity estimate holds (cf. Theorem 5.22)

∥g∥H2(U) ≤ C∥e∥L2(U).
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Taking v = e, using the orthogonality of the Ritz projection (Condition 1. of
Lemma 7.18), estimates (7.4) and (7.40), the estimates of Theorem 7.12 and the
above regularity estimate we get

∥e∥2L2(U) = B[e, g] = B[e, g − I1hg] ≤ C ∥e∥H1
0 (U)∥g − I1hg∥H1

0 (U)

≤ C h∥e∥H1
0 (U)∥g∥H2(U) ≤ C h∥e∥H1

0 (U)∥e∥L2(U).

Hence ∥e∥L2(U) ≤ C h∥e∥H1
0 (U) and since by (7.40) and (7.42) we have

∥Rhu− u∥H1
0 (U) ≤ C |Rhu− u|H1

0 (U) ≤ C h∥u∥H2(U),

that completes the proof for m = 2.
Since for m = 2, we have proven the estimate

∥e∥L2(U) ≤ C h∥e∥H1
0 (U) ≤ C h|e|H1

0 (U)

then by (7.41) we get

∥Rhu− u∥L2(U) ≤ C h|Rhu− u|H1
0 (U) ≤ C h|u|H1

0 (U) ≤ C h∥u∥H1
0 (U).

Remark. 7.1 The above estimates can be immediately extended to finite elements
of order r > 2. It is sufficient to apply the estimates of Theorem 7.12 with an
appropriate r. We then get, for 2 ≤ s ≤ r

∥Rhu− u∥L2(U) + h|Rhu− u|H1
0 (U) ≤ C hs∥u∥Hs(U), ∀u ∈ Hs(U)∩H1

0 (U).

This estimates are applicable to solutions of elliptic or parabolic equations in do-
mains with smooth boundaries since only for such domains we can expect that
u ∈ Hr(U) for r > 2 (cf. Theorem 5.22 and Remark 5.3). In polyhedral domains,
we cannot expect higher regularity of solutions because singularities can develop
in the corners of the domain. Hence there is no justification for using finite el-
ements of order higher than 2 in polyhedral domains. For convex domains with
smooth boundaries, the regularity of solutions is not a problem but to obtain a high
order approximation error a special consideration of the boundary layer U \Uh is
needed.

THEOREM. 7.20 Let u ∈ L2(0, T ;H4(U)) be a solution of (7.30) with g ∈
H3(U) and a sufficiently smooth f , and uh(t) a solution of (7.31). Then for t ≥ 0

∥uh(t)− u(t)∥L2(U) ≤ ∥gh − g∥L2(U) + C h2
(
∥g∥H2(U) +

∫ t

0
∥du
ds ∥H2(U)ds

)
.
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Proof. Using the Ritz projection, we can write

uh − u = (uh −Rhu) + (Rhu− u).

The second term can be estimated using Lemma 7.19

∥Rhu(t)− u(t)∥L2(U) ≤ C h2
∥∥∥∥g + ∫ t

0

du(s)
ds ds

∥∥∥∥
H2(U)

≤ C h2
(
∥g∥H2(U) +

∫ t

0
∥du
ds ∥H2(U)ds

)
.

Let D(t) = uh(t) − Rhu(t). Then using the definition of the Ritz projection and
the fact that Rh commutes with time differentiation we obtain(

dD
dt (t), vh

)
+B[D(t), vh] =

(
d
dtuh(t), vh

)
+B[uh(t), vh]−

(
Rh

du
dt (t), vh

)
−B[Rhu(t), vh] = (f(t), vh)−

(
Rh

du
dt (t), vh

)
−B[Rhu(t), vh]

= (f(t), vh)−
(
Rh

du
dt (t), vh

)
−B[u(t), vh]

=
(
du
dt (t)−Rh

du
dt (t), vh

)
.

Taking vh = D(t) and using the coerciveness of B we obtain

1

2

d

dt
∥D(t)∥2L2(U) ≤

(
du
dt (t)−Rh

du
dt (t), D(t)

)
≤ ∥D(t)∥L2(U)∥du

dt (t)−Rh
du
dt (t)∥L2(U),

which gives the estimate

d

dt
∥D(t)∥L2(U) ≤ ∥du

dt (t)−Rh
du
dt (t)∥L2(U).

Integrating the above inequality, we have

∥D(t)∥L2(U) ≤ ∥D(0)∥L2(U) +

∫ t

0
∥du
ds (s)−Rh

du
ds (s)∥L2(U)ds.

Using the estimate from Lemma 7.19 we get

∥du
dt (t)−Rh

du
dt (t)∥L2(U) ≤ C h2∥du

dt (t)∥H2(U)

and

∥D(0)∥L2(U) = ∥gh −Rhg∥L2(U) ≤ ∥gh − g∥L2(U) + ∥Rhg − g∥L2(U)

≤ ∥gh − g∥L2(U) + c h2∥g∥H2(U).
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The above result can be extended to finite elements of order r > 1. When a
weak solution v of (7.3) is a function in H1

0 (U) ∩Hr(U) then due to Remark 7.1
we have the estimate of the Ritz projection

∥v −Rhv∥L2(U) ≤ C hr∥v∥Hr(U). (7.43)

In the finite element space Vh that fulfills (7.43), we have a stronger estimate, but
that result has limited applicability in polyhedral domains (see Remark 7.1).

THEOREM. 7.21 Let u(t) be a solution of (7.30) and uh(t) a solution of (7.31).
Then

∥uh(t)− u(t)∥L2(U) ≤ C hr
(
∥gh − g∥Hr(U) +

∫ t

0
∥du
ds ∥Hr(U)ds

)
,

where gh ∈ Xr
h ∩ H1

0 (U) ∩ Hr+1(U) , g ∈ H1
0 (U) ∩ Hr+1(U) and u(t) ∈

H1
0 (U) ∩Hr+1(U), du

dt (t) ∈ H1
0 (U) ∩Hr(U).

For the fully discrete Galerkin method, the following estimates can be obtained.

THEOREM. 7.22 Let unh be computed by the implicit Euler scheme (scheme (7.36)
with θ = 1) with gh = I1hg. Let u ∈ L2(0, T ;H4(U)) be a solution of (7.30) with
g ∈ H3(U) and a sufficiently smooth f (cf. Remark 5.3). Then

∥unh − u(tn)∥L2(U) ≤C h2
(
∥g∥H2(U) +

∫ tn

0
∥du
ds ∥H2(U)ds

)
+ C δt

∫ tn

0
∥d2u
ds2

∥L2(U)ds.

(7.44)

The interpolant I1hg is well defined only when U ⊂ Rd, d ≤ 5 (g is continuous
due to Theorem 5.15). For d > 5 we have to assume additionally that g ∈ Hm(U),
2m > d, and appropriately reformulate the theorem.

Proof. For the implicit Euler scheme unh solves the equation

1

δt

(
un+1
h − unh, vh

)
+B[un+1

h , vh] = (f(tn+1), vh), ∀vh ∈ Vh. (7.45)

Using the Ritz projection we can write

∥unh − u(tn)∥L2(U) ≤ ∥unh −Rhu(tn)∥L2(U) + ∥Rhu(tn)− u(tn)∥L2(U).
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From Lemma 7.19 we estimate the second term

∥Rhu(tn)− u(tn)∥L2(U) ≤ C h2
(
∥g∥H2(U) +

∫ tn

0
∥du
ds ∥H2(U)ds

)
.

To estimate the first term we define Dn
h = unh − Rhu(tn). Inserting Dn

h into
equation (7.45) we obtain

1

δt

(
Dn+1

h −Dn
h , vh

)
+B[Dn+1

h , vh] = (en+1, vh), ∀vh ∈ Vh, (7.46)

where

(en+1, vh) = (f(tn+1), vh)−
1

δt

(
Rh(u(tn+1)− u(tn)), vh

)
−B[u(tn+1), vh].

Equation (7.46) for Dn
h is analogous to equation (7.36) for unh with θ = 1. Hence

the stability result of Theorem 7.16 gives

∥Dn
h∥L2(U) ≤ C

(
∥D0

h∥L2(U) + δt
n∑

i=1

∥ei∥L2(U)

)
.

For D0
h we have the estimate

∥D0
h∥L2(U) = ∥gh −Rhg∥L2(U) ≤ ∥gh − g∥L2(U) + ∥g −Rhg∥L2(U)

≤ C h2∥g∥H2(U),

by Lemma 7.19 and Theorem 7.12.
To estimate ∥ei∥L2(U) let us observe that

(f(ti), vh)−B[u(ti), vh] = (dudt (ti), vh).

Then

(ei, vh) = (dudt (ti), vh)−
1

δt

(
Rh(u(ti)− u(ti−1)), vh

)
=
(
du
dt (ti)−

u(ti)− u(ti−1)

δt
, vh

)
+
(
(I −Rh)

u(ti)− u(ti−1)

δt
, vh

)
.

Using the Taylor formula we have

du
dt (ti)−

u(ti)− u(ti−1)

δt
=

1

δt

∫ ti

ti−1

(s− ti−1)
d2u(s)
ds2

ds.
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Since Rh commutes with time differentiation, then

(I −Rh)(u(ti)− u(ti−1)) =

∫ ti

ti−1

(I −Rh)
du(s)
ds ds.

Applying Lemma 7.19 we obtain

∥(I −Rh)(u(ti)− u(ti−1))∥L2(U) ≤ C h2
∫ ti

ti−1

∥du
ds ∥H2(U)ds.

Then

∥ei∥L2(U) ≤
1

δt

∥∥∥∥∫ ti

ti−1

(s− ti−1)
d2u(s)
ds2

ds

∥∥∥∥
L2(U)

+
C h2

δt

∫ ti

ti−1

∥du
ds ∥H2(U)ds

≤
∫ ti

ti−1

∥d2u
ds2

∥L2(U)ds+
C h2

δt

∫ ti

ti−1

∥du
ds ∥H2(U)ds.

Together these estimates give

∥Dn
h∥L2(U) ≤ C h2∥g∥H2(U) + C δt

n∑
i=1

C h2

δt

∫ ti

ti−1

∥du
ds ∥H2(U)ds

+ C δt
n∑

i=1

∫ ti

ti−1

∥d2u
ds2

∥L2(U)ds

≤ C

(
h2∥g∥H2(U) + h2

∫ tn

0
∥du
ds ∥H2(U)ds+ δt

∫ tn

0
∥d2u
ds2

∥L2(U)ds

)
.

Remark. 7.2 The theorem holds under the weaker assumption g ∈ H2(U). But
with this weaker assumption the theorem formulation requires a change of norms
in the right hand side of estimate (7.44) adequate to the regularity of the time
derivatives du

dt (t) ∈ H1
0 (U) and d2u

dt2
(t) ∈ H−1(U) (cf. Theorem 5.22). Besides,

the dimension of U ⊂ Rd has to be restricted to d ≤ 3.

The above theorem remains valid for the θ-schemes with θ > 1
2

and the proof
is essentially the same. For θ < 1

2
, we can obtain an analogous theorem imposing

an additional assumption controlling the time step similar to (7.35). The result
obtained is only first-order accurate in time. To obtain second-order accuracy in
time, we have to apply the Crank-Nicolson scheme (θ = 1

2
). Then we obtain the

following theorem.
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THEOREM. 7.23 Let unh be computed by the Crank-Nicolson scheme (scheme
(7.36) with θ = 1

2
) with gh = I1hg. Let u ∈ L2(0, T ;H6(U)) be a solution of

(7.30) with g ∈ H5(U) and a sufficiently smooth f . Then

∥unh − u(tn)∥L2(U) ≤C h2
(
∥g∥H2(U) +

∫ tn

0
∥du
ds ∥H2(U)ds

)
+ C (δt)2

∫ tn

0
∥d3u
ds3

∥L2(U)ds.

The mentioned in Theorem 7.22 restrictions on the dimensionality of U and the
smoothness of g apply also in this case.

Proof. The proof goes along the same lines as the proof of Theorem 7.22. The
Crank-Nicolson scheme for unh is

1

δt

(
un+1
h −unh, vh

)
+B[ 1

2
(un+1

h +unh), vh] = ( 1
2
(f(tn+1)+f(tn)), vh), ∀vh ∈ Vh,

(7.47)
Then we split

∥unh − u(tn)∥L2(U) ≤ ∥unh −Rhu(tn)∥L2(U) + ∥Rhu(tn)− u(tn)∥L2(U)

and estimate the second term from Lemma 7.19

∥Rhu(tn)− u(tn)∥L2(U) ≤ C h2
(
∥g∥H2(U) +

∫ tn

0
∥du
ds ∥H2(U)ds

)
.

To estimate the first term we define Dn
h = unh − Rhu(tn). Inserting Dn

h into
equation (7.47) we obtain

1

δt

(
Dn+1

h −Dn
h , vh

)
+B[ 1

2
(Dn+1

h +Dn
h), vh] = ( 1

2
(en+1 + en), vh), ∀vh ∈ Vh,

where

( 1
2
(en+1 + en), vh) =( 1

2
(f(tn+1) + f(tn)), vh)−

1

δt

(
Rh(u(tn+1)− u(tn)), vh

)
−B[ 1

2
(u(tn+1) + u(tn)), vh].

Similarly to the proof of Theorem 7.22, we get the estimate of Dn
h

∥Dn
h∥L2(U) ≤ C

(
∥D0

h∥L2(U) + δt
n∑

i=1

∥ 1
2
(ei + ei−1)∥L2(U)

)
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and D0
h

∥D0
h∥L2(U) = ∥gh −Rhg∥L2(U) ≤ ∥gh − g∥L2(U) + ∥g −Rhg∥L2(U)

≤ C h2∥g∥H2(U).

To estimate ∥ 1
2
(ei + ei−1)∥L2(U) we use the identity

(f(ti), vh)−B[u(ti), vh] = (dudt (ti), vh).

Then

( 1
2
(ei + ei−1), vh) = ( 1

2
(dudt (ti) +

du
dt (ti−1)), vh)−

1

δt

(
Rh(u(ti)− u(ti−1)), vh

)
=
(
(I −Rh)

u(ti)− u(ti−1)

δt
, vh

)
+
(
du
dt (ti−1/2)−

u(ti)− u(ti−1)

δt
, vh

)
+
(1
2

(
du
dt (ti) +

du
dt (ti−1)

)
− du

dt (ti−1/2), vh

)
,

where ti−1/2 =
1
2
(ti + ti−1).

For the first term on the right hand side, we get like in Theorem 7.22

∥(I −Rh)(u(ti)− u(ti−1))∥L2(U) ≤ C h2
∫ ti

ti−1

∥du
ds ∥H2(U)ds.

Integrating by parts two times we have for the second term

1

2

∫ ti−1/2

ti−1

(s− ti−1)
2 d3u(s)

ds3
ds+

1

2

∫ ti

ti−1/2

(s− ti)
2 d3u(s)

ds3
ds

= (ti − ti−1)
(u(ti)− u(ti−1)

δt
− du

dt
(ti−1/2)

)
.

By the above formula we obtain the estimate

δt

∥∥∥∥dudt (ti−1/2)−
u(ti)− u(ti−1)

δt

∥∥∥∥
L2(U)

≤ C(δt)2
∫ ti

ti−1

∥d3u
ds3

∥L2(U)ds.

By the Taylor formula, we get for the last term

1

2

(
du
dt (ti) +

du
dt (ti−1)

)
− du

dt (ti−1/2)

=
1

2

∫ ti−1/2

ti−1

(s− ti−1)
d3u(s)
ds3

ds+
1

2

∫ ti

ti−1/2

(ti − s)d
3u(s)
ds3

ds,
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which gives the estimate∥∥∥1
2

(
du
dt (ti) +

du
dt (ti−1)

)
− du

dt (ti−1/2)
∥∥∥
L2(U)

≤ Cδt

∫ ti

ti−1

∥d3u
ds3

∥L2(U)ds.

Together these estimates give

∥Dn
h∥L2(U) ≤ C h2∥g∥H2(U) + C h2

∫ tn

0
∥du
ds ∥H2(U)ds

+ C (δt)2
n∑

i=1

∫ ti

ti−1

∥d3u
ds3

∥L2(U)ds

≤ C

(
h2∥g∥H2(U) + h2

∫ tn

0
∥du
ds ∥H2(U)ds+ (δt)2

∫ tn

0
∥d3u
ds3

∥L2(U)ds

)
.

The error estimates of Theorems 7.22 and 7.23 are given in terms of the exact
solution u(t). Using the regularity estimates like in Theorem 5.27 we can estimate
the error in terms of the initial data g and the nonhomogeneous term f .



Chapter 8

American options

An American option is a contract that grants the holder the right to buy or sell
a security (called the underlying) at an agreed-upon price during some period of
time up to and including its maturity date. The option is Bermudan if it can only
be exercised at some discrete, finite set of points in time prior to and including
the maturity date. Such contracts are traded in all major financial markets, so
identifying efficient techniques for pricing them is a very important problem.

The computation of American option prices is challenging problem, especially
when several underlying assets are involved. The mathematical problem to solve
is an optimal stopping problem. In diffusion models, this problem is reduced to
a variational inequality, which is solved by PDE methods. But in the late 1990s,
numerical methods based on Monte-Carlo techniques were introduced. The start-
ing point of these methods is the replacement of the interval of exercise dates with
a finite set of dates. This amounts to approximating the American option by the
Bermudan option.

In this chapter, we will analyze both mentioned above numerical methods.
We will present the Monte Carlo procedure due to Longstaff and Schwartz imple-
menting effectively the dynamic programming principle supplemented with least
squares regression on a finite set of functions that approximate conditional expec-
tations. We will also analyze algorithms that approximate variational inequali-
ties. We will limit our presentation to two algorithms: projected successive over-
relaxation (PSOR) and penalization.

8.1 Pricing American options

We begin with a collection of results from the theory of optimal stopping in con-
tinuous time. In this presentation, we follow the paper by El Karoui [18] where

193
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the reader can find more complete results and relevant proofs. We consider a prob-
ability space (Ω,F ,P) with filtration F = (Ft)0≤t≤T satisfying usual conditions
of completeness and right-continuity. In addition, we assume that the σ-field F0 is
trivial.

We denote by Tt,T the set of all stopping times τ ∈ [t, T ] with respect to
filtration F

Tt,T = {τ : P(τ ∈ [t, T ]) = 1}, 0 ≤ t < T < +∞.

DEFINITION. 8.1 An adapted, right-continuous process (Xt)0≤t≤T is called reg-
ular if Xτ is integrable for every τ ∈ T0,T , and for every nondecreasing sequence
τn of stopping times with limn→∞ τn = τ , we have limn→∞ E(Xτn) = E(Xτ ).

THEOREM. 8.2 Let Z = (Zt)0≤t≤T be an adapted, right-continuous process
satisfying Zt ≥ 0 for all t ∈ [0, T ], and E(sup0≤t≤T Zt) < +∞.
For t ∈ [0, T ], we define

Ut = ess sup
τ∈Tt,T

E(Zτ |Ft).

Then

1. (Ut)0≤t≤T is a supermartingale.

2. E(Ut) = supτ∈Tt,T E(Zτ ).

3. U admits a right-continuous modification.

DEFINITION. 8.3 A right-continuous modification of the process U from the
above theorem is called the Snell envelope of Z.

DEFINITION. 8.4 For a processZ a stopping time τ̂ ∈ T0,T is optimal if E(Zτ̂ ) =
supτ∈T0,T E(Zτ ).

THEOREM. 8.5 A stopping time τ̂ ∈ T0,T is optimal if and only if the following
conditions hold

1. Uτ̂ = Zτ̂ a.s.

2. U τ̂
t = Uτ̂∧t, 0 ≤ t ≤ T , is a martingale.
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THEOREM. 8.6 If the process Z is regular, then its Snell envelop U is also regu-
lar and

τ0 = inf{s ∈ [t, T ]: Us = Zs}

is the smallest optimal stopping time in Tt,T . Define

v(t) = E(Ut)

called the value function of the optimal stopping problem for the process Z in Tt,T .
Then v(t) is given by the expression

v(t) = E(Ut) = sup
τ∈Tt,T

E(Zτ ) = E(Zτ0).

After this brief review of results concerning optimal stopping, we return to
American options. The problem of pricing American options will be considered in
a financial market of d risky assets whose prices are given by stochastic processes
St = (S1

t , . . . , S
d
t ) in (Ω,F ,P). We assume that these processes are adapted to fil-

tration F, right-continuous with left limits, strictly positive semimartingales. There
is a riskless asset in that market that defines a discount factor βt.

Since the prices Si
t are nonnegative we introduce, similarly like in Chapter 5,

the new variable Xt = lnSt. The dynamics of Xt is described by the following
stochastic differential equation

dXs = b(s,Xs)ds+ σ(s,Xs)dWs. (8.1)

We will denote by Xt,x
s a solution of (8.1) with an initial condition Xt = x.

ASSUMPTION. 8.7 About the coefficients of (8.1) we assume:

(A1) b(t, x) ∈ C1
b ([0, T ] × Rd) is a vector in Rd, where Ck

b denotes k-times
differentiable functions which are bounded together with their derivatives to
order k.

(A2) σ(t, x) ∈ C1
b ([0, T ]×Rd) is a d× d matrix. In addition, the ”diagonal” en-

tries ∂2σj
i

∂xi∂xj
of the matrix of second derivatives with respect to x are bounded

and Hölder continuous uniformly in (t, x) ∈ [0, T ]× Rd.

(A3) Matrix A = 1
2
σσ⊤ = (aij)

d
i,j=1 is positive definite

∃δ > 0:
d∑

i,j=1

aij(t, x)ξiξj ≥ δ∥ξ∥2, ∀t ∈ [0, T ], x ∈ Rd, ξ ∈ Rd \ {0}.
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(A4) The discount factor βt is deterministic βt = exp
(
−
∫ t
0 r(s)ds

)
, where r(t)

is a nonnegative function in C1([0, T ]).

DEFINITION. 8.8 An American option for underlyingXt is a nonnegative, adap-
ted stochastic process (Zt)0≤t≤T , Zt = g(t,Xt), where g(t, x), called the option
reward, is a continuous function of (t, x) with exponential growth in x

|g(t, x)| ≤ CeC|x|, C > 0.

Under the conditions of Assumption 8.7, Zt is a continuous and regular process
and satisfies

E
(
sup

t∈[0,T ]
Zt

)
< +∞.

THEOREM. 8.9 Let (Ω,F ,P∗) be a probability space with the risk-neutral prob-
ability measure P∗, i.e., a measure equivalent to P such that processes βtSi

t , i =
1, . . . , d, are martingales with respect to P∗. Consider an American option in
(Ω,F ,P∗) written on a underlying asset Xt = lnSt which fulfills the conditions
of Assumption 8.7. The price at time t of an American option with payoff process
Zt = g(t,Xt), with the reward function g(t, x) fulfilling the conditions of Defini-
tion 8.8, is given by v(t,Xt), where

v(t, x) =
1

βt
sup

τ∈Tt,T
E∗(βτg(τ,Xt,x

τ )
)
.

Furthermore, there is a stopping time τ̂ attaining this supremum.
The above defined price is called the ”fair price” or arbitrage-free price of the

American option.

The following theorem is due to Jaillet, Lamberton, and Lapeyre [26]. It solves
the pricing problem for an American option in terms of the value function of an
optimal stopping problem.

THEOREM. 8.10 Let Xt,x
s be a solution of (8.1) with the coefficients fulfilling

Assumption 8.7 and a deterministic initial condition Xt = x. Let g(t, x) be the
reward function of Definition 8.8. Define the function

V (t, x) =
1

βt
sup

τ∈Tt,T
E
(
βτg
(
τ,Xt,x

τ

))
(t, x) ∈ [0, T ]× Rd. (8.2)

This function is continuous, is the value function of the optimal stopping problem
for Z̃t = βtg(t,Xt), and the process

(
βtV (t,Xt)

)
0≤t≤T

is the Snell envelope of

Z̃t. Since the initial condition Xt = x is deterministic then

V (t,Xt) =
1

βt
ess sup
τ∈Tt,T

E
(
βτg
(
τ,Xτ

)∣∣∣Ft

)
.
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For simplicity, we assume in the rest of this chapter that P is a risk-neutral
measure and processes βtSi

t , i = 1, . . . , d, are martingales with respect to this
measure.

COROLLARY. 8.11 Under the above assumption the discounted asset prices are
P-martingales and the value function V (t, x) is the arbitrage-free price of the
American option with reward g(t, x).

8.2 Monte Carlo pricing

The most popular Monte Carlo implementation of the valuation formula from The-
orem 8.10 is the Longstaff-Schwartz algorithm [37]. For numerical computations,
we replace the continuous optimal stopping problem of Definition 8.4 with the
following discrete optimal stopping problem.

In the probability space (Ω,F ,P) we consider a Markov chain (Xk)
K
k=0 with

values in Rd and a discrete filtration (Fk)
K
k=0 generated by this Markov chain and

corresponding to a time discretization 0 = t0 < t1 < · · · < tK = T .
Given a nonnegative, adapted, discrete, square integrable stochastic process

(Zk)
K
k=0 with Zk = g(tk, Xk) we want to compute supτ∈T0,K Zτ , where Tk,K

denotes the set of all stopping times with values in {tk, . . . , tK}. To simplify com-
putations we assume that the discount factor βt = 1 for all t ∈ [0, T ].

Let U = (Uk)
K
k=0 be the Snell envelope of Z

Uk = ess sup
τ∈Tk,K

E
(
Zτ

∣∣Fk

)
, k = 0, . . . ,K.

The discrete optimal stopping problem for Zk and its Snell envelope Uk is solved
by the dynamic programming

UK = ZK ,

Uk = max
(
Zk,E(Uk+1|Fk)

)
, k = 0, . . . ,K − 1.

Let
τk = min{j ≥ k: Uj = Zj}.

Then
Uk = E(Zτk

∣∣Fk) = max
(
Zk,E(Zτk+1

|Fk)
)
. (8.3)

The above relation enable us to write the dynamic programming principle in terms
of the stopping times τk:

τK = tK = T,

τk = tk11{Zk≥E(Zτk+1
|Fk)} + τk+111{Zk<E(Zτk+1

|Fk)}, k = 0, . . . ,K − 1,
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and obtain the value function for the discrete stopping problem

U0 = max
(
Z0,E(Zτ1)

)
.

As Z0 = g(0, x) is known this gives an approximation of V (0, x).

The algorithm
Step 1.
Since (Xk)

K
k=0 is a Markov chain then E(Zτk+1

|Fk) = E(Zτk+1
|Xk). The state

space of E(Zτk+1
|Xk) is L2(Rd, µk) where µk is the measure generated by the

random variable Xk. Let
(
ekm(Xk)

)
m≥1

be a basis in L2(Rd, µk). Then

E(Zτk+1
|Xk) =

∞∑
m=1

λkme
k
m(Xk). (8.4)

We approximate E(Zτk+1
|Xk) in an M -dimensional space Hk ⊂ L2(Rd, µk)

defining an orthogonal projection (for simplicity we assume all spaces Hk of the
same dimension M )

πMk : L2(Ω,P) → Hk.

We construct the sequence of approximate stopping times recursively. Starting
with τMK = tK = T and assuming that τMk+1 is known we define

πMk
(
ZτMk+1

)
= FM

k

and the stopping time

τMk = tk11{Zk≥FM
k } + τMk+111{Zk<FM

k }.

The stopping times τMk define the processes ZτMk

ZτMK
= ZK ,

ZτMk
= Zk11{Zk≥FM

k } + ZτMk+1
11{Zk<FM

k }.

Let ek(Xk) = {ek1(Xk), . . . , e
k
M (Xk)} be a basis in Hk. Then

FM
k =

M∑
m=1

λM,k
m ekm(Xk),
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where the coefficients λM,k
m are determined as a solution to the minimization prob-

lem

λM,k = argmin
a∈RM

E
(
ZτMk+1

−
M∑

m=1

ame
k
m(Xk)

)2
.

This approximation gives the approximate value function

UM
0 = max

(
Z0,E(ZτM1

)
)
.

Step 2.
To obtain a working algorithm we have to know the projections πMk . This is
achieved by a Monte Carlo simulation. To this end, we simulate N independent
paths (X1

k , . . . , X
N
k ) and compute Zn

k = g(tk, X
n
k ). The values of Zn

k are used
to compute recursively coefficients λ̂M,k

m approximating λM,k
m , and stopping times

τ̂Mk approximating τMk .
We define the stopping times τ̂Mk on each path separately starting the recursion

with τ̂MK,n = tK = T , n = 1, . . . , N . Knowing τ̂Mk+1,n we compute λ̂M,k

λ̂M,k = argmin
a∈RM

N∑
n=1

(
Zn
τ̂Mk+1,n

−
M∑

m=1

ame
k
m(Xn

k )
)2
.

This procedure gives values λ̂M,k
m . Then for n = 1, . . . , N we define

F̂M
k,n =

M∑
m=1

λ̂M,k
m ekm(Xn

k )

and the stopping times

τ̂Mk,n = tk11{Zn
k≥F̂M

k,n}
+ τ̂Mk+1,n11{Zn

k<F̂M
k,n)}

.

Recursively, starting from τ̂MK,n we compute all τ̂Mk,n for k = K − 1, . . . , 0 and
n = 1, . . . , N . Finally, we obtain the approximation of the Snell envelope at
t0 = 0

UM,N
0 = max

(
Z0,

1

N

N∑
n=1

Zn
τ̂M1,n

)
,

which gives a numerical approximation of the value function V (0, x).

Remark. 8.1 The above presentation of the algorithm is useful for convergence
analysis. In practical computations, Step 1 is limited to fixing the dimensions of
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Hk and the choice of basis functions in these spaces. Only Step 2 is fully imple-
mented in computations. The choice of basis functions means the choice of the
class of functions universal for all spaces Hk ( Longstaff-Schwartz used the La-
guerre polynomials). In Step 2 of the algorithm, we evaluate these basis functions
at points Xn

k .

Let us observe that since ek(Xk) = (ek1(Xk), . . . , e
k
M (Xk)) is a basis in Hk

the coefficients λM,k
m are uniquely defined by(

λM,k
m

)M
m=1

= (Ak)−1E
(
ZτMk+1

ek(Xk)
)
,

where
(Ak)ij = E

(
eki (Xk), e

k
j (Xk)

)
and Ak is invertible by the linear independence of ekm, m = 1, . . . ,M .

Analogously

(
λ̂M,k
m

)M
m=1

= (Âk)−1 1

N

N∑
n=1

Zn
τ̂Mk+1,n

ek(Xn
k ),

where

(Âk)ij =
1

N

N∑
n=1

eki (X
n
k ), e

k
j (X

n
k ).

Convergence

Our goal is now to prove that for M , N going to infinity UM,N
0 converge to U0, the

value function of the discrete optimal stopping problem. Our proof will follow the
approach of Clément, Lamberton, and Protter [11].

First, for vectors al ∈ RM and xl ∈ Rd we define the functions FM
k (al, xl) =∑M

m=1 a
l
me

k
m(xl). Then, for parameters a = (a1, . . . , aK−1), x = (x1, . . . , xK)

and z = (z1, . . . , zK), with ak ∈ RM , xk ∈ Rd, and zk ∈ R, we define the scalar
functions

WK(a, x, z) = zK ,

Wk(a, x, z) = zk11{zk≥FM
k (ak,xk)} +Wk+1(a, x, z)11{zk<FM

k (ak,xk)}.

Clearly

Wk(λ
M , X, Z) = ZτMk

, where λM = (λM,1, . . . , λM,K−1),

and

Wk(λ̂
M , Xn, Zn) = Zn

τ̂Mk,n
, where λ̂M = (λ̂M,1, . . . , λ̂M,K−1).
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LEMMA. 8.12 For k ∈ {1, . . . ,K − 1}

|Wk(a, x, z)−Wk(b, x, z)|

≤
( K∑
i=k

|zi|
)K−1∑

i=k

11{|zi−FM
i (bi,xi)|≤|FM

i (bi,xi)−FM
i (ai,xi)|}.

Proof. Let Bk(a) = {zk ≥ FM
k (ak, xk)}, Bk(b) = {zk ≥ FM

k (bk, xk)}. Since

Wk(a, x, z) = zk11Bk(a) +
K−1∑
i=k+1

zi11Bc
k(a)...B

c
i−1(a)Bi(a) + zK11Bc

k(a)...B
c
K−1(a)

then

Wk(a, x, z)−Wk(b, x, z) = zk(11Bk(a) − 11Bk(b))

+

K−1∑
i=k+1

zi(11Bc
k(a)...B

c
i−1(a)Bi(a) − 11Bc

k(b)...B
c
i−1(b)Bi(b))

+ zK(11Bc
k(a)...B

c
K−1(a)

− 11Bc
k(b)...B

c
K−1(b)

),

where 11Ac = 11− 11A and 11AB = 11A + 11B − 11A11B .
Since∣∣11Bc

k(a)...B
c
i−1(a)Bi(a) − 11Bc

k(b)...B
c
i−1(b)Bi(b)

∣∣
≤

i−1∑
j=k

∣∣11Bc
j (a)

− 11Bc
j (b)

∣∣+ ∣∣11Bi(a) − 11Bi(b)

∣∣ = i∑
j=k

∣∣11Bj(a) − 11Bj(b)

∣∣,
and

∣∣11Bc
k(a)...B

c
K−1(a)

− 11Bc
k(b)...B

c
K−1(b)

∣∣ ≤ K−1∑
j=k

∣∣11Bj(a) − 11Bj(b)

∣∣
we obtain

|Wk(a, x, z)−Wk(b, x, z)| ≤
( K∑
i=k

|zi|
)K−1∑

i=k

∣∣11Bi(a) − 11Bi(b)

∣∣.
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As |11A − 11B| = 11(A\B)∪(B\A) we get∣∣∣11Bk(a) − 11Bk(b)

∣∣
= 11{FM

k (ak,xk)≤zk<FM
k (bk,xk)} + 11{FM

k (bk,xk)≤zk<FM
k (ak,xk)}

= 11{FM
k (ak,xk)−FM

k (bk,xk)≤zk−FM
k (bk,xk)<0}

+ 11{0≤zk−FM
k (bk,xk)<FM

k (ak,xk)−FM
k (bk,xk)}

= 11{0<FM
k (bk,xk)−zk≤FM

k (bk,xk)−FM
k (ak,xk)}

+ 11{0≤zk−FM
k (bk,xk)<FM

k (ak,xk)−FM
k (bk,xk)}

≤ 11{|zk−FM
k (bk,xk)|≤|FM

k (bk,xk)−FM
k (ak,xk)|}.

Application of the above estimate concludes the proof.

To prove the convergence of UM,N
0 to U0 is not an easy task. First, we keep M

constant and consider the limit N → ∞ proving that UM,N
0 converge to UM

0 .

LEMMA. 8.13 Let the simulated paths Xn = (Xn
1 , . . . , X

n
K), n = 1, . . . , N , be

independent. We assume that in the finite dimensional space Hk

(LS) P(Zk = FM
k ) = 0, k = 1, . . . ,K − 1.

Under the above assumptions (λ̂M,k
m )Mm=1 converge almost surely to (λM,k

m )Mm=1,
k = 1, . . . ,K − 1.

Proof. The proof goes by induction in k. For k = K−1 the result follows from the
strong law of large numbers. Assume that the result is true for i = k, . . . ,K − 1.
Then (

λ̂M,k−1
m

)M
m=1

= (Âk−1)−1 1

N

N∑
n=1

Zn
τ̂Mk,n

ek−1(Xn
k−1).

Since 1
N

∑N
n=1Wk(λ̂

M , Xn, Zn)ek−1(Xn
k−1) converge by the law of large num-

bers to E
(
Wk(λ̂

M , X, Z)ek−1(Xk−1)
)

and by the same reason Âk−1 converge to

Ak−1 then by the equality

Zn
τ̂Mk,n

=Wk(λ̂
M , Xn, Zn)

it suffices to prove

lim
N→∞

1

N

N∑
n=1

(
Wk(λ̂

M , Xn, Zn)−Wk(λ
M , Xn, Zn)

)
ek−1(Xn

k−1) = 0.
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By Lemma 8.12 we get

1

N

∣∣∣ N∑
n=1

(
Wk(λ̂

M , Xn, Zn)− (Wk(λ
M , Xn, Zn)

)
ek−1(Xn

k−1)
∣∣∣

≤
N∑

n=1

∥ek−1(Xn
k−1)∥

K∑
i=k

|Zn
i |

×
K−1∑
i=k

11{|Zn
i −FM

i (λM,i,Xn
i )|≤|FM

i (λ̂M,i,Xn
i )−FM

i (λM,i,Xn
i )|}

.

Since λ̂M,i converge to λM,i for i ≥ k then

lim sup
N→∞

1

N

∣∣∣ N∑
n=1

(
Wk(λ̂

M , Xn, Zn)− (Wk(λ
M , Xn, Zn)

)
ek−1(Xn

k−1)
∣∣∣

≤ lim sup
N→∞

1

N

N∑
n=1

∥ek−1(Xn
k−1)∥

K∑
i=k

|Zn
i |

K−1∑
i=k

11{|Zn
i −FM

i (λM,i,Xn
i )|≤ϵ∥ei(Xn

i )∥}

= E
(
∥ek−1(Xk−1)∥

K∑
i=k

|Zi|
K−1∑
i=k

11{|Zi−FM
i (λM,i,Xi)|≤ϵ∥ei(Xi)∥}

)
,

where in the last equality we have applied the strong law of large numbers. Since
P(Zi = FM

i ) = 0 for each i by assumption (LS) then letting ϵ to zero we obtain
the desired convergence.

Let us remark that assumption (LS) is essential for a correct convergence of the
optimal stopping times τ̂Mn

∗ of Zn on simulated paths Xn to the optimal stopping
time τM ∗ of Z. It can happen that the values of F̂M

k,n, which converge to FM
k , are

always on one side of FM
k and Zn flips around Z. Then the optimal stopping times

τ̂Mn
∗ of Zn will not converge to τM ∗. Condition (LS) ensures that such an event

has a probability zero.

THEOREM. 8.14 If under the assumptions of Lemma 8.13 (λ̂M,k
m )Mm=1 converge

almost surely to (λM,k
m )Mm=1 as N tends to infinity then UM,N

0 converge to UM
0 in

probability.

Proof. Since Z0 is deterministic it is enough to prove that 1
N

∑N
n=1 Z

n
τ̂M1,n

converge

to E(ZτM1
). As pathsXn are independent then 1

N

∑N
n=1

∑M
m=1 λ̂

M,k
m ekm(Xn

k ) con-
verge to E(ZτMk+1

|Xk). Thus we have to prove

lim
N→∞

1

N

N∑
n=1

(
Zn
τ̂Mk,n

−Wk(λ
M , X, Z)

)
= 0,
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where λM = (λM,1, . . . , λM,K−1).
Since Zn

τ̂Mk,n
=Wk(λ̂

M , Xn, Zn) we have

1

N

∣∣∣ N∑
n=1

Wk(λ̂
M , Xn, Zn)−Wk(λ

M , X, Z)
∣∣∣

≤ 1

N

N∑
n=1

(
|Wk(λ̂

M , Xn, Zn)−Wk(λ
M , Xn, Zn)|

+ |Wk(λ
M , Xn, Zn)−Wk(λ

M , X, Z)|
)
.

By Lemma 8.12 we have

1

N

N∑
n=1

|Wk(λ̂
M , Xn, Zn)−Wk(λ

M , Xn, Zn)|

≤ 1

N

N∑
n=1

K∑
i=k

|Zn
i |

K−1∑
i=k

11{|Zn
i −FM

i (λM,i,Xn
i )|≤|FM

i (λ̂M,i,Xn
i )−FM

i (λM,i,Xn
i )|}

.

As λ̂M converge to λM almost surely then for some ϵ > 0 we have

lim sup
N→∞

1

N

N∑
n=1

|Wk(λ̂
M , Xn, Zn)−Wk(λ

M , Xn, Zn)|

≤ lim sup
N→∞

1

N

N∑
n=1

K∑
i=k

|Zn
i |

K−1∑
i=k

11{|Zn
i −FM

i (λM,i,Xn
i )|≤ϵ}

= E
( K∑
i=k

|Zi|
K−1∑
i=k

11{|Zi−FM
i (λM,i,Xi)|≤ϵ},

where the last equality follows from the strong law of large numbers. Letting ϵ to
zero and using assumption (LS) we get for N → ∞

1

N

N∑
n=1

(
Wk(λ̂

M , Xn, Zn)−Wk(λ
M , Xn, Zn)

)
→ 0.

The convergence

1

N

N∑
n=1

(
Wk(λ

M , Xn, Zn)−Wk(λ
M , X, Z)

)
→ 0



8.2. MONTE CARLO PRICING 205

follows straightforwardly from the law of large numbers.

The convergence of UM
0 to U0 is a consequence of the theorem below and the

properties of orthogonal projections in a Hilbert space.

THEOREM. 8.15 The following convergence holds in L2(Rd, µk)

lim
M→∞

E(ZτMk
|Xk) = E(Zτk |Xk),

for k = 1, . . . ,K.

Proof. The proof goes by induction in k. For k = K the result is true since ZτMK
=

ZτK = ZT . Assume now that the result is true for k + 1. We will show that it is
also true for k.

From the definition

ZτMk
= Zk11{Zk≥FM

k } + ZτMk+1
11{Zk<FM

k }

we obtain using (8.3)

E(ZτMk
− Zτk |Xk) =

(
Zk − E(Zτk+1

|Xk)
)(
11{Zk≥FM

k } − 11{Zk≥E(Zτk+1
|Xk)}

)
+ E(ZτMk+1

− Zτk+1
|Xk)11{Zk<FM

k }.

The second term on the right hand side converges to zero by the inductive assump-
tion. For the first term, using the identity |11A − 11B| = 11(A\B)∪(B\A), we get
similarly like in the proof of Lemma 8.12∣∣(Zk − E(Zτk+1

|Xk)
)(
11{Zk≥FM

k } − 11{Zk≥E(Zτk+1
|Xk)}

)∣∣
=
∣∣Zk − E(Zτk+1

|Xk)
∣∣ ∣∣11{E(Zτk+1

|Xk)>Zk≥FM
k } − 11{FM

k >Zk≥E(Zτk+1
|Xk)}

∣∣
≤
∣∣Zk − E(Zτk+1

|Xk)
∣∣11{|Zk−E(Zτk+1

|Xk)≤|FM
k −E(Zτk+1

|Xk)|}

≤ |FM
k − E(Zτk+1

|Xk)|
≤
∣∣FM

k − πMk
(
E(Zτk+1

|Xk)
)∣∣+ ∣∣πMk (E(Zτk+1

|Xk)
)
− E(Zτk+1

|Xk)
∣∣.

Since by definition

FM
k = πMk

(
ZτMk+1

)
= πMk

(
E(ZτMk+1

|Xk)
)

then∣∣(Zk − E(Zτk+1
|Xk)

)(
11{Zk≥FM

k } − 11{Zk≥E(Zτk+1
|Xk)}

)∣∣
≤
∣∣E(ZτMk+1

|Xk)−E(Zτk+1
|Xk)

∣∣+ ∣∣πMk (E(Zτk+1
|Xk)

)
−E(Zτk+1

|Xk)
∣∣.
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The first term on the right hand side converges to zero by the inductive assumption
and the second, by properties of orthogonal projections.

Hence we have two independent convergences: UM,N
0 → UM

0 as N goes to
infinity, and UM

0 → U0 for M → ∞. This is not sufficient to get the conver-
gence UM,N

0 → U0. The problem of this last convergence has been discussed in
many papers in recent years. There are several results obtained with the help of
mathematical techniques that are too advanced for the presentation in these lecture
notes (cf.[17], [49], [53], [54]). Some of these papers, in addition to proofs of
convergence, give also (complicated) formulas of error estimates.

8.3 Variational inequalities

Optimal stopping problems can be reduced to variational inequalities. Since vari-
ational inequalities are a classical mathematical technique used in many problems
of mathematical physics, numerical algorithms for solving them are known for a
long time. Below, we present briefly that approach to the optimal stopping prob-
lem for American options and find the value function of that problem. We will give
a theorem that guarantees the existence and uniqueness of solutions and describe
the θ-scheme, which gives its finite difference approximation. This approximation
is formulated as a linear complementarity problem (LCP). The solution of LCP
creates a numerical challenge of its own. There is a large number of numerical
algorithms treating LCP. We will present a rather old and not very fast approach
of projected successive over-relaxation (PSOR), which is quite popular due to the
simplicity of its computer implementation. We will prove that the approximation
generated by PSOR converges to the exact solution of LCP. We will discuss as well
another popular and more efficient algorithm of penalization.

We start with a brief presentation of more significant theoretical results on vari-
ational inequalities applied to optimal stopping problems. In this presentation, we
follow the paper by Jaillet, Lamberton, and Lapeyre [26]. The reader is also ad-
vised to consult the book by Bensoussan and Lions [5] where more complete proofs
can be found.

Since the stochastic process Xt for which we have constructed the value func-
tion in Section 8.1 is the logarithmic price, it takes values in Rd. Then the partial
differential equation corresponding to the stochastic equation for Xt will also be
defined in Rd. Hence, similarly like in Section 5.4, we will investigate that equation
in weighted Sobolev’s spaces. We consider Sobolev’s spaces with weight func-
tions fulfilling the conditions of Definition 5.33. In addition to spaces L2

ρ(Rd) and
H1

ρ (Rd) defined in Section 5.4, we introduce general weighted Sobolev’s spaces
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W k,p
ρ (Rd) of functions u: Rd → R such that u and all weak derivatives Dαu, for

|α| ≤ k, belong to Lp
ρ(Rd) with the norm

∥u∥
Wk,p

ρ
=

(∑
α≤k

∫
Rd

|Dαu(x)|pρ(x)dx
)1/p

, 1 ≤ p < +∞.

In spaces W k,p
ρ (Rd) we consider the differential operator At

Atu=
d∑

i,j=1

− ∂

∂xi

(
aij(t, x)

∂u

∂xj

)
+

d∑
i=1

b̄i(t, x)
∂u

∂xi
+ c(t, x)u, (8.5)

and the associated bilinear form Bt
ρ[u, v]

Bt
ρ[u, v] =

∫
Rd

( d∑
i,j=1

aij(t, x)
∂u

∂xi

∂v

∂xj
+

d∑
i=1

b̂i(t, x)
∂u

∂xi
v + c(t, x)uv

)
ρ(x)dx,

where

b̂i(t, x) = b̄i(t, x) +

d∑
j=1

aij(t, x)
1

ρ(x)

∂ρ(x)

∂xj
.

Assuming that ρ fulfills the conditions of Definition 5.33, aij , bi, c (i, j = 1, . . . , d)
are in L∞([0, T )× Rd) and aij is symmetric, we can prove, following the lines of
the proof of Theorem 5.20, the energy estimates with α, β, γ > 0

Bt
ρ[u(t), v(t)] ≤ α∥u(t)∥H1

ρ
∥v(t)∥H1

ρ
, u(t), v(t) ∈ H1

ρ (Rd) a.e. t ∈ [0, T ],

β∥u(t)∥2H1
ρ
≤ Bt

ρ[u(t), u(t)] + γ∥u(t)∥2L2
ρ
, u(t) ∈ H1

ρ (Rd) a.e. t ∈ [0, T ].

(8.6)

The market model described by (8.1) corresponds to operator At with coeffi-
cients

aij =
1

2

d∑
k=1

σki σ
k
j , b̄i = −bi +

d∑
j=1

∂aij
∂xj

, c = r(t). (8.7)

For that specification of At it is easy to prove that under Assumption 8.7 the esti-
mates (8.6) hold.

As we already know from Section 5.4, it is more convenient to operate with a
coercive bilinear form. The coerciveness ofBt

ρ[u, v] can be achieved by the change
of variables uγ(t) = e−γtu(t) (see Remark 5.4 in Section 5.4). We assume that
this change of variables has been performed and the bilinear form is coercive. To
simplify notation, we drop the index γ, which indicates this change. Hence, the
differential problem we are dealing with is formulated as follows.
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ASSUMPTION. 8.16 Let At be defined by (8.5) and Bt
ρ[u, v] be the correspond-

ing bilinear form. We assume that operator ∂
∂t + At is uniformly parabolic in

the sense of Definition 5.24 and Bt
ρ[u, v] is t-uniformly continuous and coercive in

H1
ρ (Rd)

Bt
ρ[u(t), v(t)] ≤ α∥u(t)∥H1

ρ
∥v(t)∥H1

ρ
, u(t), v(t) ∈ H1

ρ (Rd) a.e. t ∈ [0, T ],

β∥u(t)∥2H1
ρ
≤ Bt

ρ[u(t), u(t)], u(t) ∈ H1
ρ (Rd) a.e. t ∈ [0, T ].

THEOREM. 8.17 Assume that Bt
ρ fulfills the conditions of Assumption 8.16 and

g ∈ H1
ρ (Rd). Then for each v ∈ H1

ρ (Rd) such that v ≥ g, there exists a unique
solution u defined on [0, T ]× Rd of the following variational inequality

−
(du
dt

(t), v − u(t)
)
L2
ρ

+Bt
ρ[u(t), v − u(t)] ≥ 0, a.e. t ∈ [0, T ),

u(t) ≥ g, a.e. t ∈ [0, T ],

u(T ) = g.

(8.8)

For this solution we have u ∈ L2(0, T ;H1
ρ (Rd)) and du

dt ∈ L2(0, T ;H−1
ρ (Rd)).

Remark. 8.2 From Theorem 5.29 we know that in fact du
dt ∈ L2(0, T ;L2

ρ(Rd)) and
due to Theorem 5.16 u ∈ C(0, T ;L2

ρ(Rd)). Hence it is legitimate to use the scalar
product

(
du
dt (t), v−u(t)

)
L2
ρ
. For the same reason u(T ) = g has the standard sense

of equality between two L2
ρ functions.

THEOREM. 8.18 Let g = g(x) ∈ W 1,p
ρ (Rd) with p > d. If the hypotheses of

Theorem 8.10 are fulfilled and V (t, x) is the value function defined in this theorem
then V (t, x) is a solution of the variational inequality (8.8) with the coefficients of
Bt

ρ[u, v] given by (8.7). (In fact, (8.8) is solved by e−γtV (t, x) due to the mentioned
earlier change of variables.)

The proofs of the above two theorems can be found in Chapter 3 of the book
by Bensoussan and Lions [5].

THEOREM. 8.19 Under the assumptions of Theorem 8.17 variational inequal-
ity (8.8) is equivalent to the following integral version which holds for each v ∈
L2(0, T ;H1

ρ (Rd)) such that dv
dt ∈ L2(0, T ;H−1

ρ (Rd)) and v(t) ≥ g, for almost
each t ∈ [0, T ],∫ T

0
−
(du
dt

(t), v(t)− u(t)
)
L2
ρ

dt+

∫ T

0
Bt

ρ[u(t), v(t)− u(t)]dt ≥ 0,

u(t) ≥ g, a.e. t ∈ [0, T ],

u(T ) = g.

(8.9)
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In addition, for such v we have∫ T

0
−
〈dv
dt

(t), v(t)− u(t)
〉
dt+

∫ T

0
Bt

ρ[u(t), v(t)− u(t)]dt

≥ 1

2
∥v(0)− u(0)∥2L2

ρ
− 1

2
∥v(T )− u(T )∥2L2

ρ
,

u(t) ≥ g, a.e. t ∈ [0, T ],

u(T ) = g.

(8.10)

Proof. The fact that (8.8) implies (8.9) follows by integration and properties of
functions u(t) and v(t). The opposite implication is due to the fact that v(t) is an
arbitrary L2 function of t ∈ [0, T ].

To obtain (8.10) we have to add to (8.9) the obvious identity∫ T

0

〈du
dt

(t)− dv

dt
(t), v(t)− u(t)

〉
dt

=
1

2
∥v(0)− u(0)∥2L2

ρ
− 1

2
∥v(T )− u(T )∥2L2

ρ
.

DEFINITION. 8.20 The following problem is called the weak formulation of
variational inequality:
find u ∈ L2(0, T ;H1

ρ (Rd)) such that du
dt ∈ L2(0, T ;H−1

ρ (Rd)) and u(t) ≥ g, for
a.e. t ∈ [0, T ], which fulfills the following inequality∫ T

0
−
〈dv
dt

(t), v(t)− u(t)
〉
dt+

∫ T

0
Bt

ρ[u(t), v(t)− u(t)]dt

≥ −1

2
∥v(T )− u(T )∥2L2

ρ
,

(8.11)

for each v ∈ L2(0, T ;H1
ρ (Rd)) such that dv

dt ∈ L2(0, T ;H−1
ρ (Rd)) and v(t) ≥ g,

for a.e. t ∈ [0, T ].

Theorem 8.19 shows that a solution of (8.8) is also a solution of the weak
formulation (8.11). The following theorem due to Brésis [9] gives the conditions
for the opposite implication.

THEOREM. 8.21 If the bilinear form Bt
ρ[u, v] is t-uniformly continuous and co-

ercive in H1
ρ (Rd) the weak formulation (8.11) possesses a unique solution u which

is also a solution of variational inequality (8.8).
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Remark. 8.3 In general, the weak formulation of variational inequality possesses
many solutions (the advantage of the weak formulation is that a solution always
exists). Due to special properties of Bt

ρ, there is only one solution of the weak
formulation, which is then also a solution of (8.8).

For numerical applications, it is convenient to formulate variational inequalities
as linear complementarity problems.

LEMMA. 8.22 Under the assumptions of Theorem 8.17 a solution of (8.8) is
equivalent to a solution of the following linear complementarity problem

i) −
(du
dt

(t), w
)
L2
ρ

+Bt
ρ[u(t), w] ≥ 0, a.e. t ∈ [0, T ), w ∈ H1

ρ (Rd), w ≥ 0,

ii) u(t) ≥ g, a.e. t ∈ [0, T ],

iii) −
(du
dt

(t), g − u(t)
)
L2
ρ

+Bt
ρ[u(t), g − u(t)] = 0, a.e. t ∈ [0, T ),

iv) u(T ) = g.

Proof. Let u be a solution of Theorem 8.17. For w ∈ H1
ρ (Rd), w ≥ 0, we put

v = u+ w. Then v(t) ≥ g, v(t) ∈ H1
ρ (Rd), and due to (8.8)

−
(du
dt

(t), w
)
L2
ρ

+Bt
ρ[u(t), w]

= −
(du
dt

(t), v(t)− u(t)
)
L2
ρ

+Bt
ρ[u(t), v(t)− u(t)] ≥ 0,

which proves i).
Taking v(t) = g in the above inequality, we obtain

−
(du
dt

(t), g − u(t)
)
L2
ρ

+Bt
ρ[u(t), g − u(t)] ≥ 0.

On the other hand, taking w = u(t)−g ≥ 0 in i) we obtain the opposite inequality.
That gives

−
(du
dt

(t), g − u(t)
)
L2
ρ

+Bt
ρ[u(t), g − u(t)] = 0,

which proves iii).
Conversely, let u solve the LCP of the lemma. Then any v ∈ H1

ρ (Rd), v ≥ g,
can be written as v = g+w with w ≥ 0 and w ∈ H1

ρ (Rd). By inequality i) we get

−
(du
dt

(t), v − g
)
L2
ρ

+Bt
ρ[u(t), v − g] ≥ 0.
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Adding this inequality to iii) we obtain inequality (8.8).
Since points ii) and iv) are the same as in Theorem 8.17 that completes the

proof.

To compute a numerical approximation of variational inequality (8.8) we have
to restrict our considerations to a compact subset of Rd. We will show how to
construct the approximation that converges to a solution to the original problem.

To simplify considerations, we restrict the analysis to the stochastic differential
equation with time-independent coefficients

dXs = b(Xs)ds+ σ(Xs)dWs

and initial condition Xt = x.
For numerical computations, we replace the value function of the optimal stop-

ping problem for an American option

V (t, x) =
1

βt
sup

τ∈Tt,T
E
(
βτg
(
Xt,x

τ

))
.

by the approximate value function

VK(t, x) =
1

βt
sup

τ∈Tt,T
E
(
βτ∧T t,x

K
g
(
Xt,x

τ∧T t,x
K

))
,

where T t,x
K = inf{s > t: |Xt,x

s | > K}.
Then we have the uniform convergence of VK to V on compact sets (cf. [26]

and [55]).

THEOREM. 8.23 Let functions b, σ and r fulfill Assumption 8.7 and the reward
function g fulfill the condition

(A5) ρ(x)g(x) is a continuous function on Rd such that ∥ρg∥L∞(Rd) ≤ C and
∥D(ρg)∥L∞(Rd) ≤ C for C > 0, where ρ is the weight function of Definition
5.33.

Then for all UR = {x ∈ Rd: |x| < R}, R > 0,

lim
K→∞

max
t∈[0,T ]

∥V (t, ·)− VK(t, ·)∥L∞(ŪR) = 0.

THEOREM. 8.24 Let us consider the bilinear form BR[u, v] defined for u, v ∈
H1(UR) by the formula

BR[u, v] =

∫
UR

( d∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

d∑
i=1

b̄i(x)
∂u

∂xi
v + c(x)uv

)
dx,
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where the coefficients of BR are defined by (8.7). If conditions (A1)–(A5) are ful-
filled the value function VR(t, x) is a unique solution of the following variational
inequality

−
∫ T

0

(du
dt

(t), v(t)− u(t)
)
L2(UR)

dt+

∫ T

0
BR[u(t), v(t)− u(t)]dt ≥ 0,

u(t) ≥ g, a.e. t ∈ [0, T ],

u(T ) = g,

u(t) = g, on ∂UR, t ∈ [0, T ],

(8.12)

which holds for each v ∈ L2(0, T ;H1(UR)) such that dv
dt ∈ L2(0, T ;H−1(UR))

and v(t) ≥ g for almost all t ∈ [0, T ], with u ∈ L2(0, T ;H1(UR)) and du
dt ∈

L2(0, T ;L2(UR)).

Remark. 8.4 Restricting considerations to a compact set UR, we have to comple-
ment the problem with boundary conditions on ∂UR. In general, we can impose
u(t) = g0 on ∂UR, where g0 is an arbitrary function such that g0 ≥ g. The result
of Theorem 8.23 justifies any boundary conditions. It says that the behavior of the
solution near the distant boundary ∂UR does not affect the solution on any fixed
bounded region in the limit R → ∞. Therefore, any well-posed problem on UR

is suitable as an approximation of the original problem on Rd, provided that R is
taken sufficiently large. The choice g0 ≡ g is just the simplest possible choice.

Discrete variational inequalities

We will now construct a numerical algorithm approximating variational inequality
(8.12). A large part of this section follows the ideas of the book by Glowinski,
Lions, and Trémollières [22], but the proofs are slightly different as we use finite
differences instead of finite elements used in [22]. For simplicity, we will consider
only a one-dimensional problem with constant coefficients. Without loss of gener-
ality we can assume UR = (−1, 1) with boundary conditions u(t,−1) = g(−1),
u(t, 1) = g(1). We consider the bilinear form

BR[u, v] =

∫
UR

(
a2
∂u

∂x

∂v

∂x
+ b

∂u

∂x
v + cuv

)
dx, (8.13)

generated by the operator

Au = −a2∂
2u

∂x2
+ b

∂u

∂x
+ cu. (8.14)
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Under the conditions discussed at the beginning of this Section we have

BR[u, u] ≥ β∥u∥2H1(UR),

BR[u, v] ≤ α∥u∥H1(UR)∥v∥H1(UR).

We approximate operator − ∂
∂t +A by finite differences in time and space. We

divide [−1, 1] into M subintervals with length δx = 2
M and the time interval [0, T ]

into N subintervals with length δt = T
N . With grid points xk = −1 + kδx, k =

0, . . . ,M we define a grid function vM = (v(0), . . . , v(M)) which is an (M + 1)
dimensional vector. Similarly, taking tn = nδt, n = 0, . . . , N , we define a grid
function vN,M = (v

(0)
M , . . . , v

(N)
M ) in both time and spatial variables. We will write

vM for a vector and v(k) for its components if we consider a grid function in a

spatial variable only. Notation vN,M and v(n)(k) will be used for a function and its
entries in the case of a grid function in both time and spatial variables.

To define a finite difference approximation of − ∂
∂t +A we approximate deriva-

tives by finite differences. The finite difference operators in the x directions are
extensions of the operators defined in Section 6.6. The first-order operator δx is
acting on a grid function vM by the central differences

(δxvM )k =
v(k+1) − v(k−1)

2δx

and similarly, the second-order operator

(δxxvM )k =
v(k+1) − 2v(k) + v(k−1)

(δx)2
.

The derivative with respect to time is approximated by the forward difference

(δtvN,M )(n) =
v
(n+1)
M − v

(n)
M

δt
.

DEFINITION. 8.25 With the above definitions of the finite difference operators,
we define the following spaces for grid functions in spatial variables:

L2
M (UR) = {vM = (v(k))

M
k=0:

M∑
k=0

|v(k)|2 < +∞}

with the norm

∥vM∥2L2
M

=
M∑
k=0

δx|v(k)|2;
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and

H1
M (UR) = {vM = (v(k))

M
k=0:

M∑
k=0

∣∣∣v(k+1) − v(k−1)

2δx

∣∣∣2 < +∞}

with the norm

∥vM∥2H1
M

=

M∑
k=0

δx|v(k)|2 +
M∑
k=0

δx
∣∣∣v(k+1) − v(k−1)

2δx

∣∣∣2.
Similarly, we define the L2 type spaces for grid functions in time and spatial vari-
ables

L2
N (0, T ;L2

M (UR)) = {vN,M = (v
(n)
M )Nn=0:

N∑
n=0

M∑
k=0

|v(n)(k) |
2 < +∞}

with the norm

∥vN,M∥2L2
N (L2

M ) =
N∑

n=0

M∑
k=0

δtδx|v(n)(k) |
2,

and

L2
N (0, T ;H1

M (UR)) = {vN,M = (v
(n)
M )Nn=0:

N∑
n=0

M∑
k=0

∣∣∣v(n)(k+1) − v
(n)
(k−1)

2δx

∣∣∣2 < +∞}

with the norm

∥vN,M∥2L2
N (H1

M ) =
N∑

n=0

M∑
k=0

δtδx|v(n)(k) |
2 +

N∑
n=0

M∑
k=0

δtδx
∣∣∣v(n)(k+1) − v

(n)
(k−1)

2δx

∣∣∣2,
We now define a matrix Λ which is a discrete approximation of operator A.

DEFINITION. 8.26 Let Λ be an (M + 1)× (M + 1) dimensional matrix acting
on grid functions vM

(ΛvM )(k) = −a2(δxxvM )(k) + b(δxvM )(k) + c(vM )(k), k = 1, . . . ,M − 1,

(ΛvM )(0) = v(0), (ΛvM )(M) = v(M).

Then for vM , wM ∈ H1
M (UR), we define

(ΛvM , wM )L2
M

=
M∑
k=0

δxw(k)(ΛvM )(k)
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as an approximation of the bilinear form BR[v, w]. By elementary computations
we obtain the analogous estimates as for BR[v, w]

|(ΛvM , wM )L2
M
| ≤ α∥vM∥H1

M
∥wM∥H1

M
,

|(ΛvM , vM )L2
M
| ≥ β∥vM∥2H1

M
.

Our goal is to prove that the grid functions obtained by solving an appropriate
discrete variational inequality converge to a solution of the continuous variational
inequality (8.12). This requires an extension of grid functions to functions defined
on [0, T ]× UR. For this purpose, we use a piecewise constant extension.

Let χ(xk) denote the characteristic function of the interval (xk− 1
2
δx, xk+ 1

2
δx)

and χ(tn), the characteristic function of the interval (tn − 1
2
δt, tn + 1

2
δt), with

obvious modifications for χ(x0), χ(xM ), χ(t0), χ(tN ). Then we define the step
function

v̂N,M =
N∑

n=0

M∑
k=0

v
(n)
(k)χ(xk)χ(tn) (8.15)

and similarly

v̂
(n)
M =

M∑
k=0

v
(n)
(k)χ(xk).

The following technical lemma summarizes the essential properties of these
step functions.

LEMMA. 8.27 Let v ∈ L2(0, T ;H1(UR)) and dv
dt ∈ L2(0, T ;H−1(UR)). For a

family of grids defined by uniform partitions of UR with steps δx → 0 and [0, T ]
with steps δt → 0 there exists a sequence of grid functions vN,M such that the
corresponding piecewise constant extensions v̂N,M converge for δx, δt→ 0

v̂N,M → v in L2(0, T ;L2(UR)),

(δxvN,M )̂ → Dv in L2(0, T ;L2(UR)),

(δtvN,M )̂ → dv
dt in L2(0, T ;H−1(UR)).

Here we write Dv (despite the one-dimensionality of v) to stress the fact that the
derivative is in the weak sense.

Proof. Assuming v ∈ H1(UR) we will prove that there is a sequence of grid func-
tions vM such that v̂M → v in L2(UR) and (δxvM )̂ → Dv in L2(UR).

Since a function in H1(UR) can be approximated by a sequence of C∞ func-
tions (cf. Theorem 5.6) we can restrict the proof to v ∈ C∞(ŪR). For a C∞

function v a weak derivative is a classical derivative which will be denoted by v′.
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Let xk, k = 0, . . . ,M , be grid points in UR. We define the grid function
vM = (v(0), . . . , v(M)) by the localization of v

v(k) = v(xk).

Then there is a sequence of grid functions vM such that step functions v̂M converge
uniformly to v on UR. Since v is a continuous function on a compact set, this
function is uniformly continuous. Hence, for a given ϵ > 0 there exists a grid step
δx = h1 such that

|v(x)− v(xk)| < ϵ for |x− xk| < h1.

Then
sup
UR

|v̂M − v| < ϵ

for a grid step h1. This proves the uniform convergence of v̂M to v on UR.
Next, we prove that there exists a grid step h2 such that (δxvM )̂ converge uni-

formly to v′ on UR.
With the Taylor expansion, we have∣∣∣v(xk + h2)− v(xk − h2)

2h2
− v′(xk)

∣∣∣ ≤ 1

2
h22|v′′(xk + θh2)| ≤ Ch22,

where C = 1
2 supUR

|v′′|.
Let v′M denote the localization of v′. Then the above Taylor estimate gives

sup
UR

∣∣(δxvM )̂− v̂′M
∣∣ ≤ Ch22 < ϵ/2

for h22 <
ϵ
2C .

Since v′ is uniformly continuous on UR then for h2 sufficiently small we have

sup
UR

|v̂′M − v′| < ϵ/2.

Together these estimates prove the uniform convergence of (δxvM )̂ to v′ on UR.
The proof of convergence (δtvN,M )̂ → dv

dt is analogous and will be omitted.

Remark. 8.5 We cannot get v̂N,M → v in L2(0, T ;H1(UR)) since v̂N,M is not in
H1(UR). That is the reason why we consider separately the convergence of v̂N,M

to v and (δxvN,M )̂ to Dv.

The consistency of finite difference approximations requires a slightly different
definition than in Chapter 6.
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DEFINITION. 8.28 We say that a bilinear form (AvM , wM ) defined by matrix A
is consistent with a bilinear formB[v, w] associated with a second-order uniformly
elliptic operator A in divergence form if for each vM , wM ∈ H1

M such that for
δx→ 0

v̂M ⇀ v, (δxvM )̂⇀ Dv weakly in L2(UR),

ŵM → w, (δxwM )̂ → Dw strongly in L2(UR),

we have

(Av̂M , ŵM ) → B[v, w],

(AŵM , v̂M ) → B[w, v].

With a certain abuse of notation, we write Av̂M understanding this expression as
the abbreviation of (AvM )̂ .

LEMMA. 8.29 The bilinear form (ΛvM , wM ) defined by matrix Λ of Definition
8.26 is consistent in the sense of the above definition with the bilinear formBR[v, w]
given by (8.13).

In addition, for vN,M ∈ L2
N (0, T ;H1

M (UR)) such that for δt, δx→ 0

v̂N,M ⇀ v, (δxvN,M )̂⇀ Dv weakly in L2(0, T ;L2(UR)),

we have

lim inf
δt,δx→0

∫ T

0
(Λv̂N,M , v̂N,M )L2(UR)dt ≥

∫ T

0
BR[v, v]dt. (8.16)

Proof. By elementary computations we get (with natural modifications for k = 0
and k =M )

−(δxxvM )wM = −
M∑
k=0

1

δx

(v(k+1) − v(k)

δx
−
v(k) − v(k−1)

δx

)
w(k)

=
M∑
k=0

v(k) − v(k−1)

δx

w(k) − w(k−1)

δx
.

The above identity gives∫
UR

−(δxxv̂M )ŵMdx =

∫
UR

(δxv̂M )(δxŵM )dx,

which enables the rewriting of (Λv̂M , ŵM ) as the bilinear form

(Λv̂M , ŵM ) =

∫
UR

(
a2(δxv̂M )(δxŵM ) + b(δxv̂M )ŵM + cv̂M ŵM

)
dx.
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Let now v̂M and ŵM be sequences that fulfill the conditions of Definition 8.28.
Then (Λv̂M , ŵM ) and (ΛŵM , v̂M ) can be expressed in terms of the above bilinear
form as linear combinations of scalar products (u1n, u

2
m) in L2(UR), where u1n is a

sequence weakly convergent to u1 and u2m, a sequence strongly convergent to u2.
From the definitions of weak and strong convergence, we have

(u1n, u
2
m) → (u1, u2m) → (u1, u2).

This proves the consistency of (Λvm, wM ) with BR[v, w].
The proof of (8.16) follows from the definition of weak convergence and the

Fatou lemma

lim inf
δt,δx→0

∫ T

0

(
(Λv̂N,M , v̂N,M )− (Λv̂N,M , v)

)
dt

≥ lim inf
δt,δx→0

∫ T

0

(
(Λv, v̂N,M )−BR[v, v]

)
dt.

Then

lim inf
δt,δx→0

∫ T

0
(Λv̂N,M , v̂N,M )dt

≥ lim inf
δt,δx→0

∫ T

0

(
(Λv̂N,M , v) + (Λv, v̂N,M )−BR[v, v]

)
dt ≥

∫ T

0
BR[v, v]dt,

which ends the proof.

We approximate the variational inequality (8.12) by the θ-scheme in time and
finite differences in space. Using finite differences in spatial variables creates ad-
ditional difficulties in the proof of convergence as v̂M is not in H1(UR). In one
dimension, one can omit that difficulty by using finite elements from H1(UR).
We have decided to carry on the proof for finite differences but in a way that
can be extended straightforwardly to the finite element approximation in a multi-
dimensional case when v̂M is not in H1(UR). In this way, we obtain simultane-
ously the proof for finite differences and finite elements.

DEFINITION. 8.30 Let gh = (g(0), . . . , g(M)), g(k) = g(xk), be an approxima-
tion of the reward function g. The finite difference approximation wN,M of the
variational inequality (8.12) is defined recursively by the following θ-scheme:

i) w(N)
M = gh,

ii) knowing w(n+1)
M ∈ H1

M (UR), w
(n+1)
M ≥ gh, find w(n)

M ∈ H1
M (UR), w

(n)
M ≥

gh, n = N − 1, . . . , 0, such that for all vM ∈ H1
M (UR), vM ≥ gh,(

w
(n+1)
M −w(n)

M −δtΛ
(
(1−θ)w(n+1)

M +θw
(n)
M

)
, vM−w(n)

M

)
L2
M

≤ 0. (8.17)
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Since the iterations go downwards then θ = 1 corresponds to the fully implicit
scheme.

Let us assume for a moment that the recursion of the above definition possesses
a unique solution. The existence of that solution will be proved by the construction
of a relevant numerical algorithm (cf. Theorems 8.35 and 8.36).

Our goal now is to prove that wN,M given by (8.17) converges to a solution of
(8.12). We begin with the proof of stability for the finite difference approximation.

THEOREM. 8.31 Let operator Λ fulfill the conditions of Definition 8.26. Then
wN,M , a solution of the discrete variational inequality (8.17), has the following
estimate for (1− θ)δt(δx)−2 small enough

max
0≤n≤N

∥w(n)
M − gh∥2L2

M
+ C

N−1∑
n=0

∥w(n+1)
M − w

(n)
M ∥2L2

M
+ C

N∑
n=0

δt∥w(n)
M ∥2H1

M

≤ CT∥gh∥2H1
M
.

Proof. Inserting vM = gh into (8.17) we have(
w

(n+1)
M − w

(n)
M , gh − w

(n)
M

)
L2
M

− δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, gh − w

(n)
M

)
L2
M

≤ 0.
(8.18)

Using the identities(
w

(n+1)
M − w

(n)
M , gh − w

(n)
M

)
L2
M

=
1

2

(
∥w(n)

M − gh∥2L2
M

+ ∥w(n+1)
M − w

(n)
M ∥2L2

M
− ∥w(n+1)

M − gh∥2L2
M

)
,

(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, w

(n)
M

)
L2
M

= θ
(
Λw

(n)
M , w

(n)
M

)
L2
M

+ (1− θ)
(
Λw

(n+1)
M , w

(n+1)
M

)
L2
M

− (1− θ)
(
Λw

(n+1)
M , w

(n+1)
M − w

(n)
M

)
L2
M

,

and the estimates of Definition 8.26 we obtain from (8.18)

∥w(n)
M − gh∥2L2

M
+ ∥w(n+1)

M − w
(n)
M ∥2L2

M
+ 2δtθβ∥w(n)

M ∥2H1
M

+ 2δt(1− θ)β∥w(n+1)
M ∥2H1

M

≤ ∥w(n+1)
M − gh∥2L2

M
+ 2δt(1− θ)α∥w(n+1)

M ∥H1
M
∥w(n+1)

M − w
(n)
M ∥H1

M

+ 2δtα
(
(1− θ)∥w(n+1)

M ∥H1
M

+ θ∥w(n)
M ∥H1

M

)
∥gh∥H1

M
.
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Since
∥v∥H1

M
≤ C0(δx)

−1∥v∥L2
M

(8.19)

then using the Cauchy inequality we obtain

∥w(n)
M − gh∥2L2

M
+
(
1− C2

0

2ϵ
(1− θ)αδt(δx)−2

)
∥w(n+1)

M − w
(n)
M ∥2L2

M

+ 2δtθ(β − αϵ)∥w(n)
M ∥2H1

M
+ 2δt(1− θ)(β − 2αϵ)∥w(n+1)

M ∥2H1
M

≤ δt
α

2ϵ
∥gh∥2H1

M
+ ∥w(n+1)

M − gh∥2L2
M
.

Taking δt(δx)−2 such small that
(
1− C2

0
2ϵ (1− θ)αδt(δx)−2

)
≥ γ > 0, and ϵ such

that 2αϵ < β, we obtain

∥w(n)
M − gh∥2L2

M
+ γ∥w(n+1)

M − w
(n)
M ∥2L2

M
+ Cδt∥w(n)

M ∥2H1
M

+ Cδt∥w(n+1)
M ∥2H1

M

≤ Cδt∥gh∥2H1
M

+ ∥w(n+1)
M − gh∥2L2

M
.

Summing the above inequality from N down to m ≥ 0 we obtain

∥w(m)
M − gh∥2L2

M
+ γ

N−1∑
n=m

∥w(n+1)
M − w

(n)
M ∥2L2

M

+C
N∑

n=m

δt∥w(n)
M ∥2H1

M
+ C

N∑
n=m

δt∥w(n+1)
M ∥2H1

M

≤ CT∥gh∥2H1
M
.

In the proof of convergence, we will use the weak formulation of a variational
inequality. The theorem below shows that the weak discrete formulation follows
from the strong formulation, the result analogous to the corollary of Theorem 8.19.

THEOREM. 8.32 Let wN,M be a solution of the strong formulation of discrete
variational inequality

N−1∑
n=0

−δt
(w(n+1)

M − w
(n)
M

δt
, v

(n)
M − w

(n)
M

)
L2
M

+
N−1∑
n=0

δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, v

(n)
M − w

(n)
M

)
L2
M

≥ 0,

w
(n)
M ≥ gh, n = 0, . . . , N,

w
(N)
M = gh,
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for each vN,M such that v(n)M ∈ H1
M and v(n)M ≥ gh, n = 0, . . . , N .

Then wN,M solves the following weak formulation

N−1∑
n=0

−δt
(v(n+1)

M − v
(n)
M

δt
, v

(n)
M − w

(n)
M

)
L2
M

+
N−1∑
n=0

δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, v

(n)
M − w

(n)
M

)
L2
M

≥ −1

2
∥v(N)

M − w
(N)
M ∥L2

M
,

w
(n)
M ≥ gh, n = 0, . . . , N,

w
(N)
M = gh,

for each vN,M as above.

THEOREM. 8.33 Let wN,M be a sequence of solutions of the discrete varia-
tional inequality (8.17) for δt and δx tending to zero (N,M → ∞). Let u be
a unique solution of the continuous variational inequality (8.12) with the bilinear
form BR[u, v] defined by (8.13). Let ŵN,M denote a piecewise constant extension
ofwN,M . Then for (1−θ) δt

(δx)2
→ 0 as δt, δx go to zero, we obtain the convergence

ŵN,M → u in L2(0, T ;L2(UR)),

(δxwN,M )̂ → Du in L2(0, T ;L2(UR)).

Proof. From the stability results of Theorem 8.31 it follows that the sequence ŵN,M

is bounded. Then this sequence contains a weakly convergent subsequence, which
we also denote ŵN,M . Let

ŵN,M ⇀ w in L2(0, T ;L2(UR)),

(δxwN,M )̂⇀ Dw in L2(0, T ;L2(UR)).

Our goal is to prove that w is a solution of the variational inequality (8.12) with
BR[u, v] defined by (8.13). We take v ∈ L2(0, T ;H1(UR)) such that dv

dt ∈
L2(0, T ;H−1(UR)), v(T ) = g, and v(t) ≥ g for t ∈ [0, T ). Let v̂N,M be a
sequence of piecewise constant approximations to v which exists due to Lemma
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8.27. Inserting vN,M into the weak inequality of Theorem 8.32 we obtain

N−1∑
n=0

−δt
(v(n+1)

M − v
(n)
M

δt
, v

(n)
M − w

(n)
M

)
L2
M

+

N−1∑
n=0

δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, v

(n)
M − w

(n)
M

)
L2
M

≥ 0.

After a rearrangement we have

N−1∑
n=0

− δt
(v(n+1)

M − v
(n)
M

δt
, v

(n)
M − w

(n)
M

)
L2
M

+
N−1∑
n=0

δt
(
Λw

(n)
M , v

(n)
M − w

(n)
M

)
L2
M

≥ (1− θ)
N−1∑
n=0

δt
(
Λ
(
w

(n)
M − w

(n+1)
M

)
, v

(n)
M − w

(n)
M

)
L2
M

.

(8.20)

Since ŵN,M converges to w weakly then due to Lemma 8.29 we have

lim inf
δt,δx→0

∫ T

0

(
ΛŵN,M , ŵN,M

)
L2(UR)

dt ≥
∫ T

0
BR[w,w]dt.

As v̂N,M → v and (δtvN,M )̂ → dv
dt strongly then passing to the limit δt, δx → 0

on the left hand side of (8.20) (with the change from vN,M and wN,M to v̂N,M and
ŵN,M ) and using the consistency results of Definition 8.28 one gets

∫ T

0
−
〈dv
dt

(t),v(t)− w(t)
〉
dt+

∫ T

0
BR

[
w(t), v(t)− w(t)

]
dt

≥ lim sup
δt,δx→0

(1− θ)
N−1∑
n=0

δt
(
Λ
(
w

(n)
M − w

(n+1)
M

)
, v

(n)
M − w

(n)
M

)
L2
M

.

It remains to prove that

XN,M = (1− θ)
N−1∑
n=0

δt
(
Λ
(
w

(n)
M − w

(n+1)
M

)
, v

(n)
M − w

(n)
M

)
L2
M

tends to zero.
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Due to the estimates of Definition 8.26 and (8.19), we obtain

|XN,M | ≤ (1− θ)α

N−1∑
n=0

δt∥(w(n)
M − w

(n+1)
M ∥H1

M
∥v(n)M − w

(n)
M ∥H1

M

≤ C0(1− θ)α(δx)−1
N−1∑
n=0

δt∥(w(n)
M − w

(n+1)
M ∥L2

M
∥v(n)M − w

(n)
M ∥H1

M

≤ C0(1− θ)α(δx)−1(δt)
1
2

(N−1∑
n=0

∥(w(n)
M − w

(n+1)
M ∥2L2

M

) 1
2

×
(N−1∑

n=0

δt∥v(n)M − w
(n)
M ∥2H1

M

) 1
2

.

The term
N−1∑
n=0

∥(w(n)
M − w

(n+1)
M ∥2L2

M

is bounded due to Theorem 8.31. Since vN,M , wN,M ∈ L2
N (0, T ;H1

M (UR))

N−1∑
n=0

δt∥v(n)M − w
(n)
M ∥2H1

M

is also bounded.
Due to the assumption (1−θ)(δx)−2δt→ 0 as δt, δx→ 0. HenceXN,M → 0

and we have∫ T

0
−
〈dv
dt

(t), v(t)− w(t)
〉
dt+

∫ T

0
BR

[
w(t), v(t)− w(t)

]
dt ≥ 0,

which proves that w is a solution of the weak formulation of variational inequality
(8.11). Due to Theorem 8.21 a solution of the weak variational inequality (8.11) is
also a solution of strong variational inequality (8.12) and since (8.12) possesses a
unique solution then w ≡ u.

We have to prove that the convergence of ŵN,M to u and (δxwN,M )̂ to Du is
strong in L2(0, T ;L2(UR)). Let ûN,M be a piecewise constant approximation of u
which exists due to Lemma 8.27. We will show that

YN,M =

N∑
n=0

δt
(
Λw

(n)
M − Λu

(n)
M , w

(n)
M − u

(n)
M

)
L2
M

converges to zero as δx, δt→ 0.
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Taking in the weak variational inequality of Theorem 8.32 vN,M = uN,M we
obtain (observe that u(T ) = g)

N−1∑
n=0

δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, w

(n)
M

)
L2
M

≤
N−1∑
n=0

−δt
(u(n+1)

M − u
(n)
M

δt
, u

(n)
M − w

(n)
M

)
L2
M

+
N−1∑
n=0

δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, u

(n)
M

)
L2
M

.

(8.21)

Since

YN,M =

N∑
n=0

δt
(
Λw

(n)
M , w

(n)
M

)
L2
M

−
N∑

n=0

δt
(
Λw

(n)
M , u

(n)
M

)
L2
M

+

N∑
n=0

δt
(
Λu

(n)
M , u

(n)
M − w

(n)
M

)
L2
M

(8.22)

and
N−1∑
n=0

δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, w

(n)
M

)
L2
M

+ (1− θ)

N−1∑
n=0

δt
(
Λw

(n)
M − Λw

(n+1)
M , w

(n)
M

)
L2
M

=

N−1∑
n=0

δt
(
Λw

(n)
M , w

(n)
M

)
L2
M

(8.23)

we can insert (8.21) and (8.23) into (8.22) to obtain

YN,M ≤
N−1∑
n=0

−δt
(u(n+1)

M − u
(n)
M

δt
, u

(n)
M − w

(n)
M

)
L2
M

+
N−1∑
n=0

δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, u

(n)
M

)
L2
M

+ (1− θ)

N−1∑
n=0

δt
(
Λw

(n)
M − Λw

(n+1)
M , w

(n)
M

)
L2
M

−
N∑

n=0

δt
(
Λw

(n)
M , u

(n)
M

)
L2
M

+
N∑

n=0

δt
(
Λu

(n)
M , u

(n)
M − w

(n)
M

)
L2
M
.
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Using the equality

(1− θ)w
(n+1)
M + θw

(n)
M = w

(n)
M − (1− θ)

(
w

(n)
M − w

(n+1)
M

)
we obtain the estimate

YN,M ≤
N−1∑
n=0

δt
(
−
u
(n+1)
M − u

(n)
M

δt
+ Λu

(n)
M , u

(n)
M − w

(n)
M

)
L2
M

− (1− θ)

N−1∑
n=0

δt
(
Λw

(n)
M − Λw

(n+1)
M , u

(n)
M − w

(n)
M

)
L2
M

.

We prove now

Z = (1− θ)
N−1∑
n=0

δt
(
Λw

(n)
M − Λw

(n+1)
M , u

(n)
M − w

(n)
M

)
L2
M

→ 0.

From the estimates of Definition 8.26 and (8.19) we have

|Z| ≤ (1− θ)α
N−1∑
n=0

δt∥w(n)
M − w

(n+1)
M ∥H1

M
∥u(n)M − w

(n)
M ∥H1

M

≤ C0(1− θ)α(δx)−1
N−1∑
n=0

δt∥w(n)
M − w

(n+1)
M ∥L2

M
∥u(n)M − w

(n)
M ∥H1

M

≤ C(1− θ)(δx)−1(δt)
1
2

(N−1∑
n=0

∥w(n)
M − w

(n+1)
M ∥2L2

M

) 1
2

×
(N−1∑

n=0

δt∥u(n)M − w
(n)
M ∥2H1

M

) 1
2

.

Similarly like above,
N−1∑
n=0

∥w(n)
M − w

(n+1)
M ∥2L2

M

is bounded due to Theorem 8.31, and since vN,M , wN,M ∈ L2
N (0, T ;H1

M (UR))
then also

N−1∑
n=0

δt∥u(n)M − w
(n)
M ∥2H1

M

is bounded.
Hence if (1− θ)δt(δx)−2 → 0 as δt, δx→ 0 then Z → 0.
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The remaining expression

N−1∑
n=0

δt
(
−
u
(n+1)
M − u

(n)
M

δt
+ Λu

(n)
M , u

(n)
M − w

(n)
M

)
L2
M

also converges to zero. As ûN,M → u strongly, hence also weakly, and ŵN,M ⇀ u
weakly then ûN,M − ŵN,M converges to zero weakly. Since (δtuN,M )̂ → du

dt
strongly then

N−1∑
n=0

δt
(
−
u
(n+1)
M − u

(n)
M

δt
, u

(n)
M − w

(n)
M

)
L2
M

→ 0.

By the strong convergence ûN,M → u, the weak convergence ûN,M − ŵN,M ⇀ 0,
and the consistency result of Lemma 8.29 we have

N∑
n=0

δt
(
Λu

(n)
M , u

(n)
M − w

(n)
M

)
L2
M

=

∫ T

0

(
ΛûN,M , ûN,M − ŵN,M

)
L2(UR)

dt→ 0.

That proves YN,M → 0 as δt, δx→ 0.
By the estimates of Definition 8.26 and the convergence YN,M → 0

N∑
n=0

δt
(
Λw

(n)
M − Λu

(n)
M , w

(n)
M − u

(n)
M

)
L2
M
dt ≥ β

N∑
n=0

δt∥w(n)
M − u

(n)
M ∥2H1

M
.

Hence ∫ T

0
∥ŵN,M − ûN,M∥2L2(UR)dt→ 0,

and ∫ T

0
∥(δxwN,M )̂ − (δxuN,M )̂ ∥2L2(UR)dt→ 0,

which give the desired convergence

ŵN,M → u strongly in L2(0, T ;L2(UR)),

(δxwN,M )̂ → Du strongly in L2(0, T ;L2(UR)).
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Projected SOR algorithm

We begin with reformulating the discrete variational inequality (8.17) as a linear
complementarity problem. The following lemma is a discrete version of Lemma
8.22.

LEMMA. 8.34 Let wN,M be a solution of the discrete variational inequality of
Definition 8.30. Then wN,M is a solution of the following discrete linear comple-
mentarity problem:
knowing w(n+1)

M ∈ H1
M (UR) such that w(n+1)

M ≥ gh, find w(n)
M ∈ H1

M (UR), n =
N − 1, . . . , 0, such that for all vM ∈ H1

M (UR), vM ≥ 0,

i) w
(N)
M = gh,

ii)
(
w

(n+1)
M − w

(n)
M − δtΛ

(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, vM

)
L2
M

≤ 0,

iii) w
(n)
M ≥ gh,

iv)
(
w

(n+1)
M − w

(n)
M − δtΛ

(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, gh − w

(n)
M

)
L2
M

= 0.

By the above lemma on each time step n = N − 1, . . . , 0 we have to solve the
linear problem

QX ≥ G,

X ≥ Φ,

(QX −G,X − Φ) = 0,

(8.24)

where (·, ·) denotes the scalar product in RM+1 ≡ L2
M and

Q = I + θδtΛ,

X = w
(n)
M ,

G = (I − (1− θ)δtΛ)w
(n+1)
M ,

Φ = gh.

Introducing new variables Z = X −Φ and V = G−QΦ we can rewrite the linear
complementarity problem in the following form:
find W = (Wk)

M
k=0 and Z = (Zk)

M
k=0 such that

QZ −W = V,

W ≥ 0, Z ≥ 0,

(W,Z) = 0.

(8.25)
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THEOREM. 8.35 Let Λ fulfill the estimates of Definition 8.26. Then a solution of
(8.25) is unique.

Proof. Due to the estimates of Definition 8.26, we have (δt is fixed)

C1∥v∥2H1
M

≥ (Qv, v)L2
M

≥ C2∥v∥2H1
M
.

Since now δx is fixed the norms ∥ · ∥L2
M

and ∥ · ∥H1
M

are equivalent. Hence Q is a
bounded, positive definite matrix.

Assume for the proof simplicity that Q is symmetric (this assumption will be
used further in the PSOR algorithm).

Let us consider the following optimization problem

max
Z≥0

V⊤Z − 1

2
Z⊤QZ.

The Lagrange function for this problem is

L(Z,W ) =
1

2
Z⊤QZ − V⊤Z −W⊤Z,

where W is a vector of the Lagrange multipliers. Let us observe that the Lagrange
function is convex. Hence there is a unique solution of this optimization problem
and the solution fulfills the Kuhn-Tucker conditions. Computing the Kuhn-Tucker
conditions we obtain

QZ − V −W = 0,

W ≥ 0, Z ≥ 0,

WkZk = 0, k = 0, . . . ,M, hence (W,Z) = 0.

which is exactly (8.25).

We have assumed in the above proof that Q is a symmetric, positive definite
matrix. The positive definiteness of matrix Q is essential for the algorithm (see
Theorem 8.36). The assumption of symmetry can be partially relaxed to diago-
nally dominant matrices or a particular type of tridiagonal matrices. We omit such
extensions to make the proof of convergence simple.

The PSOR algorithm
Step 1.
Select the relaxation parameter ω ∈ (1, 2), the accuracy ϵ > 0, and the starting
point Z0 ≥ 0. Put p = 0.
Step 2.
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Compute successively

Y p+1
i = Vi −

i−1∑
j=1

QijZ
p+1
j −

M∑
j=i

QijZ
p
j ,

Zp+1
i = max

(
0, Zp

i + ω
Y p+1
i

Qii

)
,

W p+1
i = −Y p+1

i +Qii

(
Zp+1
i − Zp

i

)
.

Step 3.
If |Zp+1 − Zp| > ϵ increase p by 1 and return to Step 2, otherwise stop. Zp+1 is
the solution.

THEOREM. 8.36 Let Zp, W p be generated by the PSOR algorithm. Then Zp →
Z, W p →W where (Z,W ) is a solution of (8.25).

Proof. Let F (u) = u⊤Qu− 2u⊤V . Then by the symmetry of Q

F (u)− F (v) = (u− v)⊤Q(u− v) + 2(u− v)⊤(Qv − V ).

We define the vectors z(p,l), l = −1, 0, . . . ,M ,

z
(p+1,l)
i =

{
Zp+1
i , for 0 ≤ i ≤ l,

Zp
i , for l < i ≤M.

Then z(p+1,−1) = Zp and z(p+1,M) = Zp+1. With vectors z(p+1,l) we can write

Y p+1
i = (V −Qz(p+1,i−1))i.

Let

ω(p+1,i) =

{(
Zp+1
i − Zp

i

) Qii

Y p+1
i

, if Y p+1
i ̸= 0 ,

ω, if Y p+1
i = 0.

We have 0 ≤ ω(p+1,i) ≤ ω since: i) if Y p+1
i ̸= 0 and Zp

i + ω
Y p+1
i
Qii

≥ 0 then

ω(p+1,i) = ω; ii) if Zp
i + ω

Y p+1
i
Qii

< 0 then Y p+1
i < 0 and 0 ≤ ω(p+1,i) < ω. Thus

we can write

Zp+1
i = Zp

i + ω(p+1,i)
Y p+1
i

Qii
.
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We have

F (z(p+1,i))− F (z(p+1,i−1))

=
(
z(p+1,i) − z(p+1,i−1)

)⊤
Q
(
z(p+1,i) − z(p+1,i−1)

)
+ 2
(
z(p+1,i) − z(p+1,i−1)

)⊤(
Qz(p+1,i−1) − V

)
and after simplifications

F (z(p+1,i))− F (z(p+1,i−1))

= Qii

(
Zp+1
i − Zp

i

)2 − 2
(
Zp+1
i − Zp

i

)
Y p+1
i

= −ω(p+1,i)(2− ω(p+1,i))

(
Y p+1
i

)2
Qii

.

Since 0 ≤ ω(p+1,i) ≤ ω < 2 then F (z(p+1,i)) ≤ F (z(p+1,i−1)) and the sequence
F (z(p,i)) is decreasing. By the definition of z(p,i) we have F (Zp+1) ≤ F (Zp).
Since F (u) is bounded from below as a quadratic function with matrix Q positive
definite then

F (Zp) ↘ F∞, p→ ∞.

Let a = min0≤i≤M Qii then by the definition of ω(p+1,i) we obtain

F (z(p+1,i−1))− F (z(p+1,i)) = Qii

(
Zp+1
i − Zp

i

)2(−1 +
2

ω(p+1,i)

)
≥ a

(
−1 +

2

ω

)(
Zp+1
i − Zp

i

)2
.

This gives∣∣Zp+1
i − Zp

i

∣∣ ≤ (a(−1 +
2

ω

))− 1
2
(
F (z(p+1,i−1))− F (z(p+1,i))

) 1
2
.

The convergence of F (z(p,i)) implies∣∣Zp+1
i − Zp

i

∣∣→ 0, p→ ∞.

Let Z be a condensation point of Zp. There exists a sequence pk → ∞, for
k → ∞, such that

Zpk → Z, for k → ∞.

Then we have

Y pk → Y = V −QZ,

W pk →W = −Y.
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We have to prove Z ≥ 0 and Y ≤ 0. Condition Z ≥ 0 follows from the
inequality Zp ≥ 0 for all p. Let us assume now that Y > 0. Then there exist ϵ > 0,
p0, and i0 such that Y pk

i0
≥ ϵ for pk ≥ p0. But from Step 2 of the PSOR algorithm

we obtain
Zpk
i0

− Zpk−1
i0

≥ ϵω

Qi0i0

, for pk ≥ p0

and that contradicts the convergence Zpk
i − Zpk−1

i → 0.
We will now prove that Y⊤Z = 0. Suppose it is not true. Then there exist

ϵ > 0, i0, and p0 such that

Zpk
i0

≥ ϵ, Y pk
i0

≤ −ϵ, for pk ≥ p0.

Then from Step 2 of the PSOR algorithm

Zpk−1
i0

≥ Zpk
i0

and
∣∣Zpk

i0
− Zpk−1

i0

∣∣ ≥ ϵω

Qi0i0

, for pk ≥ p0,

which again contradicts the convergence Zpk
i − Zpk−1

i → 0.
For the proof completeness, we have to show that the sequence Zp possesses

a condensation point. To this end, let us observe that Zp ∈ R = {z : F (z) ≤
F (Z0)} for all p. Since F (u) is bounded from below, R is compact as the inverse
image of a compact set under a continuous mapping. Then Zp has a condensation
point as an infinite sequence in a compact set.

Penalty method

The basic idea of the penalty method is to replace variational inequality (8.12) by
the nonlinear differential equation

− ∂uϵ
∂t

+Atuϵ +
1

ϵ
j(uϵ(t)) = 0, on [0, T )× UR,

uϵ(t) = g, on ∂UR, a.e. t ∈ [0, T ),

uϵ(T ) = g, on UR,

(8.26)

where j(u) = [u− g]− and [x]− = min(x, 0).
We begin the investigation of (8.26) with the following useful lemma.

LEMMA. 8.37 Operator j(u) is monotone in L2(UR), i.e.,

∀u1, u2 ∈ L2(UR) (j(u1)− j(u2), u1 − u2) ≥ 0.

This operator is also continuous in L2(UR).
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Proof. By the elementary estimate

(x− − y−)(x− y) ≥ (x− − y−)2, x, y ∈ R

we obtain taking u1, u2 ∈ L2(UR)(
j(u1)− j(u2), u1 − u2

)
=
(
[u1 − g]− − [u2 − g]−, u1 − u2

)
=
(
[u1 − g]− − [u2 − g]−, (u1 − g)− (u2 − g)

)
≥ ∥[u1 − g]− − [u2 − g]−∥2 = ∥j(u1)− j(u2)∥2 ≥ 0.

The same estimate proves that j(u) is continuous.

From Chapter 3 of the book by Bensoussan and Lions [5] we have the following
two theorems.

THEOREM. 8.38 Let Assumption 8.16 hold in UR. There exists a unique weak
solution uϵ(t) of (8.26) with uϵ ∈ L2(0, T ;H1(UR)) and duϵ

dt ∈ L2(0, T ;L2(UR)).

THEOREM. 8.39 Let u(t) be a solution of (8.12) with u ∈ L2(0, T ;H1(UR))
and du

dt ∈ L2(0, T ;L2(UR)). Let uϵ(t) solve (8.26) with uϵ ∈ L2(0, T ;H1(UR))

and duϵ
dt ∈ L2(0, T ;L2(UR)). Then

max
t∈[0,T ]

∥u(t)− uϵ(t)∥L2(UR) ≤ C
√
ϵ,

for C > 0.

We will now construct a numerical solution of (8.26). Similarly, like for varia-
tional inequalities, we limit considerations to a one-dimensional case. We assume
that operator At is time-independent and given by formula (8.14) and consider the
weak formulation of the differential equation (8.26)(

− d
dtuϵ(t), v

)
L2(UR)

+BR

[
uϵ(t), v

]
+

1

ϵ

(
j(uϵ(t)), v

)
L2(UR)

= 0, (8.27)

which holds t ∈ [0, T ) a.e. for each v ∈ H1(UR).
We approximate the differential problem by finite differences. Like previously,

we define space and time grids, the corresponding functional spaces L2
M (UR),

H1
M (UR) and L2

N (0, T ;L2
M (UR)), L2

N (0, T ;H1
M (UR)), and grid functions vM ,

vN,M . Matrix Λ is given by Definition 8.26, and due to Lemma 8.29 (ΛvM , wM )
is consistent with BR[v, w].

We approximate problem (8.26) for a space-time grid function wN,M by the
following θ-scheme

w
(n)
M − w

(n+1)
M + δtΛ

(
(1− θ)w

(n+1)
M + θw

(n)
M

)
+
δt

ϵ
jh(w

(n)
M ) = 0, (8.28)
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where jh(w
(n)
M ) = [w

(n)
M − gh]

−.
It can be shown under additional mild assumptions (cf. Theorem 8.44) that

(8.28) possesses a unique solution.

THEOREM. 8.40 Let matrix Λ fulfill the conditions of Definition 8.26. Then
wN,M , a solution of the discrete penalty problem (8.28), has for (1 − θ)δt(δx)−2

small enough the following estimate

max
0≤n≤N

∥w(n)
M − gh∥2L2

M
+ C

N−1∑
n=0

∥w(n+1)
M − w

(n)
M ∥2L2

M
+ C

N∑
n=0

δt∥w(n)
M ∥2H1

M

≤ CT∥gh∥2H1
M
.

Proof. Multiplying equation (8.28) scalarly by (w
(n)
M − gh) we obtain(

w
(n)
M − w

(n+1)
M , w

(n)
M − gh

)
L2
M

+ δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, w

(n)
M − gh

)
L2
M

+
δt

ϵ

(
jh(w

(n)
M ), w

(n)
M − gh

)
L2
M

= 0.

(8.29)

We have(
jh(w

(n)
M ), w

(n)
M − gh

)
L2
M

=
(
jh(w

(n)
M )− jh(gh), w

(n)
M − gh

)
L2
M

≥ 0

by the monotonicity of jh which follows from Lemma 8.37 and the observation
that jh(gh) = 0.

Then (8.29) can be reduced to(
w

(n)
M − w

(n+1)
M , w

(n)
M − gh

)
L2
M

+ δt
(
Λ
(
(1− θ)w

(n+1)
M + θw

(n)
M

)
, w

(n)
M − gh

)
L2
M

≤ 0

and this is exactly inequality (8.18) from the proof of Theorem 8.31. Thus the rest
of the proof goes exactly like the proof of Theorem 8.31.

With the above estimate we can prove that solutions of problem (8.28) converge
to a weak solution of problem (8.26) as δt, δx→ 0.

THEOREM. 8.41 Let wN,M be a sequence of solutions of the discrete penalty
problem (8.28) for δt and δx tending to zero (N,M → ∞). Let uϵ be a unique
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weak solution of the continuous penalty problem (8.26). Let ŵN,M denote a piece-
wise constant extension of wN,M . Then for (1− θ) δt

(δx)2
sufficiently small to fulfill

the conditions of Theorem 8.40, we obtain the convergence

ŵN,M ⇀ uϵ in L2(0, T ;L2(UR)),

(δxwN,M )̂⇀ Duϵ in L2(0, T ;L2(UR)).

Proof. From the stability results of Theorem 8.40 it follows that the sequence ŵN,M

is bounded. Then this sequence contains a weakly convergent subsequence, which
we also denote ŵN,M . Let

ŵN,M ⇀ w in L2(0, T ;L2(UR)),

(δxwN,M )̂⇀ Dw in L2(0, T ;L2(UR)).

Our goal is to prove that w is a weak solution of the penalty problem (8.26). This
proof is analogous to the proof of Theorem 5.28. We take v ∈ L2(0, T ;H1(UR))
such that v(t) ≥ g for t ∈ [0, T ]. Let v̂N,M be a sequence of piecewise constant
approximations of v. We multiply (8.28) scalarly by v̂(n)M and sum over n

N−1∑
n=0

((
−
ŵ

(n+1)
M − ŵ

(n)
M

δt
, v̂

(n)
M

)
L2
M

+
(
Λ
(
(1− θ)ŵ

(n+1)
M + θŵ

(n)
M

)
, v̂

(n)
M

)
L2
M

+
1

ϵ

(
jh(ŵ

(n)
M ), v̂

(n)
M

)
L2
M

)
= 0.

Passing to the limit δt, δx→ 0, using the consistency of (ΛwM , vM ) withBR[w, v]
and the continuity (hence also the weak continuity) of j(x) we obtain∫ T

0

((
− d

dtw(t), v(t)
)
L2(UR)

+BR[w(t), v(t)]+
1

ϵ

(
j(w(t)), v(t)

)
L2(UR)

)
dt = 0.

Since v ∈ L2(0, T ;H1(UR)) is arbitrary, we have(
− d

dtw(t), z
)
L2(UR)

+BR[w(t), z] +
1

ϵ

(
j(w(t)), z

)
L2(UR)

= 0,

for each z ∈ H1(UR). Hence w(t) is a weak solution of (8.26) with w ≥ g as all
ŵN,M ≥ gh and w(T ) = g since w(N)

M = gh.

Remark. 8.6 Delicate analytical considerations exploring the regularity of solu-
tions of penalty problem (8.26) and the estimates of Theorem 8.40 reveal that the
weakly convergent sequence ŵN,M of Theorem 8.41 is in fact converging strongly
to w = uϵ in L2(0, T ;L2(UR)).
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DEFINITION. 8.42 A square matrix A is called the M -matrix if non-diagonal
entries of A are nonpositive (aij ≤ 0, i ̸= j) and all principal minors of A are
positive definite. This property can be expressed in terms of entries of A saying
that ∀i aii ≥ 0, aij ≤ 0, i ̸= j and ∀i

∑
j aij ≥ 0 with at least one i0 such that∑

j ai0j > 0.
The property of an M -matrix A which will be particularly important for our

future considerations is the positivity of A−1.

Remark. 8.7 For the Black-Scholes model we have matrix Λ with a2 = 1
2σ

2, b =
1
2σ

2 − r and c = r. Then Λ is a tridiagonal matrix with

Λk,k = σ2
1

(δx)2
+ r,

Λk,k+1 = −1

2
σ2

1

(δx)2
+
(1
2
σ2 − r

) 1

δx
,

Λk,k−1 = −1

2
σ2

1

(δx)2
−
(1
2
σ2 − r

) 1

δx
.

Hence Λ is an M -matrix for δx < min(1, σ
2

2r ).
Obviously also Q = (I + δtθΛ) is an M -matrix. Q is an M -matrix even for

negative interest rates provided δt is sufficiently small.

Denoting

Q = I + θδtΛ,

X = w
(n)
M ,

Qp = (I − (1− θ)δtΛ),

Xp = w
(n+1)
M ,

Φ = gh,

we can write (8.28) in the compact form

QX +
δt

ϵ
[X − Φ]− = QpXp. (8.30)

We will solve (8.30) assuming thatQ is anM -matrix. To solve equation (8.30),
we will apply an iterative method. But first, we will prove the following estimate.

LEMMA. 8.43 Let wN,M be a solution of (8.28). Then for 0 ≤ n ≤ N

∥[w(n)
M − Φ]−∥L2

M
≤ C

ϵ

δt
.
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Proof. We denote Yϵ = w
(n)
M − Φ. Then (8.30) can be written as

QYϵ +
δt

ϵ
[Yϵ]

− = QpXp −QΦ. (8.31)

Without loss of generality we can assume that Yϵ = (y1, y2), where y1 = [Yϵ]
−,

and y2 = [Yϵ]
+, and matrix Q is decomposed accordingly

Q =

(
Q11 Q12

Q21 Q22

)
.

Let QpXp −QΦ = b. Due to Theorem 8.40 ∥b∥L2
M

is bounded for all wN,M .
We multiply scalarly (8.31) by [Yϵ]

− to obtain

(Q11y1, y1)L2
M

+ (Q12y2, y1)L2
M

+
δt

ϵ
∥[Yϵ]−∥2L2

M
= (b, [Yϵ]

−)L2
M
. (8.32)

(Q11y1, y1)L2
M

≥ 0 sinceQ is anM -matrix. We have y1 ≤ 0 andQ12y2 ≤ 0 since
y2 ≥ 0 andQ12 ≤ 0. Then (Q12y2, y1)L2

M
≥ 0. Dropping these nonnegative terms

from the left hand side of (8.32) we obtain

∥[Yϵ]−∥2L2
M

≤ ϵ

δt

∣∣(b, [Yϵ]−)L2
M

∣∣ ≤ ϵ

δt
∥[Yϵ]−∥L2

M
∥b∥L2

M
.

A solution of (8.30) is obtained by nonlinear iterations. To define these itera-
tions let us introduce the diagonal matrix

P (X)ij =

{
1 if X < Φ and i = j,

0 otherwise.
(8.33)

Then we can write equation (8.30) as(
Q+

δt

ϵ
P (X)

)
X = QpXp +

δt

ϵ
P (X)Φ.

The above equation can be solved by the following Newton iterations:

X0 = Xp,(
Q+

δt

ϵ
P (Xk)

)
Xk+1 = QpXp +

δt

ϵ
P (Xk)Φ.

(8.34)

The iteration process stops when for a given tolerance η

∥Xk+1 −Xk∥L∞(UR)

max
(
1, ∥Xk+1∥L∞(UR)

) < η, or P (Xk+1) = P (Xk).
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THEOREM. 8.44 Let Λ be an M -matrix. Then

a) the iterates (8.34) converge to a unique solution of (8.30) for any initial
value Xp;

b) the iterates converge monotonically: if X1 ≥ X0 then Xk+1 ≥ Xk, for
k ≥ 1.

Proof. Monotone convergence. Subtracting from equation (8.34) for Xk+1 the
same equation for Xk we obtain(

Q+
δt

ϵ
P (Xk)

)
(Xk+1 −Xk) =

δt

ϵ

(
P (Xk)− P (Xk−1)

)
(Φ−Xk).

Let us examine the term
(
P (Xk)− P (Xk−1)

)
(Φ−Xk):

1. if Xk
i < Φi then P (Xk)ii = 1 and

(
P (Xk)− P (Xk−1)

)
ii
(Φ−Xk)i ≥ 0;

2. if Xk
i ≥ Φi then P (Xk)ii = 0 and

(
P (Xk) − P (Xk−1)

)
ii
(Φ − Xk)i =

−P (Xk−1)ii(Φ−Xk)i ≥ 0.

Thus we always have(
P (Xk)− P (Xk−1)

)
(Φ−Xk) ≥ 0, k ≥ 1.

Since Λ is an M -matrix then also (I + θδtΛ + δt
ϵ P (X

k)) is an M -matrix. Thus
for k ≥ 1 we have

(Xk+1 −Xk)

=
(
I + θδtΛ +

δt

ϵ
P (Xk)

)−1(
P (Xk)− P (Xk−1)

)
(Φ−Xk) ≥ 0.

Bounded iterates. From (8.34) we have for k ≥ 1

∥Xk+1∥L∞(UR)

≤
∥∥∥(Q+

δt

ϵ
P (Xk)

)−1∥∥∥
L(L∞,L∞)

∥∥∥QpXp +
δt

ϵ
P (Xk)Φ

∥∥∥
L∞(UR)

≤ C,

since matrix
(
Q + δt

ϵ P (X
k)
)−1

is bounded as the inverse of an M -matrix and

matricesQp and P (Xk) are bounded (in the norm of any finite dimensional space).
The bounded, monotone sequence of iterates converges to a solution of (8.30).
Uniqueness. Assume that there are two solutions of (8.30): V 1 and V 2. Sub-

tracting equation (8.30) for V 2 from the same equation for V 1 we obtain(
Q+

δt

ϵ
P (V 2)

)
(V 1 − V 2) =

δt

ϵ

(
P (V 1)− P (V 2)

)
(Φ− V 1).
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Using similar computations as in the proof of monotonicity, we have(
P (V 1)− P (V 2)

)
(Φ− V 1) ≥ 0.

Since
(
Q+ δt

ϵ P (V
2)
)

is an M -matrix then (V 1 − V 2) ≥ 0. Performing the same
computations with the role of V 1 and V 2 interchanged we get (V 2 − V 1) ≥ 0.
Hence V 1 = V 2.
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